Астрономы нашли экстремально яркую сверхновую

Сверхновая звезда, или взрыв сверхновой — процесс колоссального взрыва звезды в конце ее жизни. При этом освобождается огромная энергия, а светимость возрастает в миллиарды раз. Оболочка звезды выбрасывается в космос, образуя туманность. А ядро сжимается настолько, что становится либо нейтронной звездой, либо чёрной дырой.

Химическая эволюция вселенной протекает именно благодаря сверхновым. Во время взрыва в пространство выбрасываются тяжелые элементы, образующиеся во время термоядерной реакции при жизни звезды. Далее из этих остатков формируются протозвёзды с планетарными туманностями, из которых в свою очередь образуются звёзды с планетами.

Так же возникла и Земля, все вещество которое нас окружает и из которого мы состоим, зародилось в недрах звёзд, еще до образования Солнца.

SN 1987A - Сверхновая, вспыхнувшая в 1987 году

Как происходит взрыв

Как известно, звезда выделяет огромную энергию благодаря термоядерной реакции, происходящей в ядре. Термоядерная реакция — это процесс превращения водорода в гелий и более тяжелые элементы с выделением энергии. Но вот когда водород в недрах заканчивается, верхние слои звезды начинают обрушиваться к центру. После достижения критической отметки вещество буквально взрывается, всё сильнее сжимая ядро и унося верхние слои звезды ударной волной.

В довольно малом объеме пространства образуется при этом столько энергии, что часть ее вынуждено уносить нейтрино, у которой практически нет массы.

Новые и сверхновые звёзды

§ 24. Переменные и нестационарные звёзды

Вскоре после того, как ядро прекратит сжиматься, наружные слои звезды, которые не участвовали в этом катастрофическом сжатии, упадут на него. При ударе о ядро плотность и температура вещества этих слоёв резко возрастут. Это порождает мощную ударную волну, которая движется наружу со скоростью не менее 30 тыс. км/с и срывает со звезды большую часть массы. В некоторых случаях вещество полностью рассеивается в космическом пространстве, а иногда на месте звезды остаётся плотный остаток её ядра.

В 1967 г. выводы теории получили весьма неожиданное подтверждение. В созвездии Лисички группа английских радиоастрономов обнаружила источник необычных радиосигналов: импульсы продолжительностью около 0,3 с повторялись через каждые 1,34 с, причём периодичность импульсов выдерживалась с точностью до 10-10 с. Так был открыт первый пульсар, которых в настоящее время известно уже около 500.

Сразу же после открытия пульсаров было высказано предположение о том, что они являются быстровращающимися нейтронными звёздами. Излучение пульсара, которое испускается в узком конусе, наблюдатель видит лишь в том случае, когда при вращении звезды этот конус направлен на него подобно свету маяка. Вещество пульсаров состоит из нейтронов, образовавшихся при соединении протонов с электронами, тесно прижатых друг к другу гравитационными силами. Диаметры таких нейтронных звёзд всего 20— 30 км, а плотность близка к ядерной и может превышать 1018 кг/м3.

Таким образом, нейтронные звезды являются одним из тех объектов во Вселенной, которые предоставляют учёным возможность изучать поведение вещества в условиях, пока недостижимых в земных лабораториях.

Исследования показали, что пульсары являются остатками сверхновых звёзд. Один из пульсаров был обнаружен в Крабовидной туманности, которая наблюдается на месте вспышки сверхновой в 1054 г. Его излучение в оптическом, радио- и рентгеновском диапазонах излучения меняется с периодом, равным 0,033 с (рис. 5.28).

Наиболее уникальные объекты, получившие название чёрных дыр, должны возникать, согласно теории, на конечной стадии эволюции звёзд, масса которых значительно превышает солнечную. У объекта такой массы, который сжимается до размеров в несколько километров, поле тяготения оказывается столь сильным, что вторая космическая скорость в его окрестности должна была бы превышать скорость света. Стало быть, чёрную дыру не могут покинуть ни частицы, ни даже излучение — она становится невидимой. Возможность обнаружить такой объект существует лишь в том случае, когда чёрная дыра оказывается одним из компонентов тесной двойной звездной системы. Мощное гравитационное поле черной дыры способно вызвать падение на нее газа из атмосферы другой звезды, входящей в эту систему. Газ при падении на чёрную дыру нагревается до высокой температуры и даёт рентгеновское излучение. Именно это излучение и позволяет обнаружить существование чёрной дыры. В настоящее время известно несколько десятков рентгеновских источников, в состав которых могут входить чёрные дыры. Наиболее вероятным «кандидатом» среди них считается Лебедь Х-1.

Белые карлики, нейтронные звезды и черные дыры являются конечными стадиями эволюции звёзд различной массы. Из вещества, которое было потеряно ими, в последующем могут образовываться звёзды нового поколения. Процесс формирования и развития звёзд рассматривается в настоящее время как один из важнейших процессов эволюции звёздных систем — галактик — и Вселенной в целом.

    Вопросы

1. Перечислите известные вам типы переменных звёзд. 2. Перечислите возможные конечные стадии эволюции звёзд. 3. В чём причина изменения блеска цефеид? 4. Почему цефеиды называют «маяками Вселенной»? 5. Что такое пульсары? 6. Может ли Солнце вспыхнуть, как новая или сверхновая звезда? Почему?

Сверхновая типа Ia

Этот вид сверхновых рождается не из звезд, а из белых карликов. Интересная особенность — светимость всех этих объектов одинакова. А зная светимость и тип объекта, можно вычислить его скорость по красному смещению. Поиск сверхновых типа Ia очень важен, ведь именно с их помощью обнаружили и доказали ускоряющееся расширение вселенной.

Сверхновая типа Ia - Кеплер

Возможно, завтра они вспыхнут

Существует целый список, в который включены кандидаты в сверхновые звёзды. Конечно, достаточно сложно определить, когда именно произойдет взрыв. Вот ближайшие из известных:

  • IK Пегаса. Двойная звезда расположена в созвездии Пегас на удалении от нас до 150 световых лет. Её спутник – массивный белый карлик, который уже перестал производить энергию посредством термоядерного синтеза. Когда главная звезда превратится в красный гигант и увеличит свой радиус, карлик начнёт увеличивать массу за счёт неё. Когда его масса достигнет 1,44 солнечной, может произойти взрыв сверхновой.
  • Антарес. Красный сверхгигант в созвездие Скорпиона, от нас до него 600 световых лет. Компанию Антаресу составляет горячая голубая звезда.
  • Бетельгейзе. Подобный Антаресу объект, находится в созвездии Орион. Расстояние до Солнца от 495 до 640 световых лет. Это молодое светило (около 10 миллионов лет), но считается, что оно достигло фазы выгорания углерода. Уже в течение одного-двух тысячелетий мы сможем полюбоваться взрывом сверхновой.

Новые звезды

Название новые звезды сохранилось с древних времен за звездами, которые считались действительно новыми. Накопленные коллекции фотографий показали, что на самом деле так называемая новая звезда в действительности существовала и раньше, но внезапно вспыхнула, вследствие чего блеск ее за короткое время увеличился в десятки тысяч раз. После вспышки звезда постепенно возвращается к прежнему блеску. Амплитуда изменения блеска новых звезд от 7 до 14 звездных величин, т. е. блеск может изменяться до 400 000 раз. В максимуме блеска они бывают от —6 до —9 абсолютной звездной величины. Возможно, что у новых звезд вспышки повторяются с промежутками в тысячи лет. Яркие новые звезды, блеск которых в максимуме достигал первой звездной величины, наблюдались редко, например в 1901, 1918, 1925 гг. Ввиду неожиданности такого рода вспышек открытие новых звезд происходит случайно. Их открывают по большей части любители астрономии, иногда школьники. Для этого надо чаще осматривать созвездия вблизи Млечного Пути. Но не примите планету за новую звезду!

Вспышка новой звезды происходит обычно за несколько дней — катастрофически, а возврат к прежнему блеску длится годами и сопровождается колебаниями блеска. Катастрофическая вспышка звезды, при которой освобождается энергия, равная энергии, излучаемой Солнцем за миллион лет, происходит вследствие каких-то внутренних процессов. Такое состояние неустойчивости накапливается годами или веками, а затем происходит взрыв.

Изменения в спектре новой звезды показали следующее: блеск звезды увеличивается потому, что вздувается фотосфера — растет ее поверхность. В момент максимума блеска диаметр новой звезды больше диаметра земной орбиты. В момент наибольшего блеска со звезды срывается внешний слой и со скоростью около 1000 км/сек, расширяясь, устремляется в пространство. Вспыхивают как новые только очень горячие звезды умеренных светимостей, так что нашему Солнцу вспышка не угрожает.

Сверхновые звезды

Некоторые особые звезды неожиданно вспыхивают и угасают подобно новым звездам. Однако в максимуме блеска они бывают в сотни раз ярче: от —11 до —18 звездной величины. Их называют сверхновыми звездами. Скорость выброса газов из них тоже во много раз больше, чем у обычных новых звезд. Малая изученность сверхновых звезд объясняется тем, что после изобретения телескопа «поблизости» от нас не вспыхивала ни одна сверхновая звезда. Наблюдались только очень далекие сверхновые звезды, для которых, кроме изменения блеска вблизи максимума, ничего установить обычно нельзя.

Вследствие колоссальной светимости, в максимуме превосходящей в сотни миллионов раз светимость ярчайших из обычных звезд, мы видим сверхновые звезды на громадных расстояниях от нас, в других звездных системах. Для оценки этих расстояний используют измерения блеска сверхновых звезд. Вспышки сверхновых звезд крайне редки — в среднем одна вспышка за несколько столетий в системе, содержащей миллиарды звезд.

Еще до изобретения телескопа в нашей звездной системе наблюдались три звезды, несомненно бывшие сверхновыми. На месте, где одна из них вспыхнула в 1054 г. в созвездии Тельца, находится особенная слабо светящаяся туманность, названная Крабовидной. Она состоит из ионизированного газа, в виде прожилок, пронизывающих ее основную аморфную массу. Из сравнения фотографий, сделанных в разные годы, выяснилось, что туманность расширяется со скоростью 1000 км/сек. Ее расширение, а следовательно, и возникновение началось с года вспышки сверхновой звезды. Туманность была выброшена ею при вспышке. Позднее оказалось, что Крабовидная туманность является одним из мощнейших источников радиоизлучения. Оно вызывается тем, что имеющееся в туманности магнитное поле тормозит порожденные при вспышке электроны, движущиеся в ней со скоростью, близкой к скорости света. Такое радиоизлучение называется нетепловым, точнее синхротронным. Крабовидная туманность оказалась также и одним из наиболее мощных космических источников рентгеновских лучей. На месте вспышек других «близких» сверхновых звезд также найдены радиоизлучающие и расширяющиеся туманности. Вспышки сверхновых звезд — грандиознейшие и редчайшие из катастроф, происходящих с небесными телами.

Изучение всех переменных и новых звезд крайне важно для понимания природы и эволюции звезд вообще, так как переменные и особенно новые звезды находятся в неустойчивых состояниях на поворотных этапах своего развития. Кроме того, происходящие у этих звезд сильные изменения наблюдаемы, а у обычных звезд нет, так как их изменения слишком медленны.

Список литературы

Для подготовки данной работы были использованы материалы с сайта https://skywatching.net

Дата добавления: 09.04.2013

Влияние на Землю

Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне. Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты. Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.

Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.

Астрономы нашли экстремально яркую сверхновую

Астрономы обнаружили самую яркую и высокоэнергетичную сверхновую из известных на сегодняшний день. Суммарное энерговыделение SN2016aps оказалось в сотни раз больше, чем в случае обычных сверхновых. Это объясняется тем, что ее звезда-прародитель образовалась при слиянии двух звезд в одну. Статья опубликована в журнале Nature Astronomy.

Взаимодействие сверхновой с плотной околозвездной средой может значительно увеличить ее светимость путем преобразования кинетической энергии разлетающегося вещества в тепловую. Например, в сверхмощных сверхновых (SLSN, superluminous supernova) типа IIn за счет подобного процесса может выделяться до ~1051 эрг. Несколько оптических транзиентов в центрах активных галактик показали схожие с подобными сверхновыми спектры и гораздо большее энерговыделение, но их трудно отличить от вспышек во время аккреции вещества на сверхмассивную черную дыру. Поиск и изучение мощных вспышек сверхновых необходим для понимания процессов, идущих в недрах звезд на заключительных этапах их эволюции и приводящих к подобным катаклизмам.

Группа астрономов во главе с Мэттом Николлом (Matt Nicholl) сообщила о результатах исследования сверхновой SN2016aps, которая была открыта при помощи системы PanSTARRS 22 февраля 2020 года. На момент обнаружения сверхновая имела абсолютную звездную величину -22,5m, она вспыхнула в самой яркой области звездообразования в небольшой галактике на красном смещении z = 0,2657. В дальнейшем, за сверхновой в течение четырех лет велись наблюдения при помощи наземных обсерваторий и космического телескопа «Хаббл», а анализ архивных данных позволил выявить начало увеличения яркости источника в декабре 2020 года.

Анализ данных показал, что SN2016aps можно считать самой яркой и высокоэнергетичной сверхновой из известных на сегодняшний день. Для обычной сверхновой энергия, выделившаяся в виде оптического излучения, составляет всего один процент от общего энерговыделения 1051 эрг. Для SN2016aps суммарное энерговыделение оценивается в 1052 эрг, причем 50 процентов выделилось в виде оптического излучения, что в сотни раз превышает подобный показатель для ранее наблюдавшихся вспышек сверхновых.

Столь экстремальные свойства сверхновой можно объяснить слиянием двух массивных звезд в одну, общая масса получившейся системы оценивается более чем в 50-100 масс Солнца, а ядро звезды могло иметь массу около 50 масс Солнца. Получившаяся массивная звезда взорвалась как пульсирующая парно-нестабильная сверхновая, при этом столкновение ударной волны на этапе взрыва с массивной оболочкой из ранее выброшенного вещества могло обеспечить наблюдавшееся энерговыделение сверхновой.

Сравнение кривой блеска SN2016aps с другими мощными сверхновыми

Matt Nicholl et al./Nature Astronomy, 2020

Поделиться

Ранее мы рассказывали о том, как астрономы поймали длинный гамма-всплеск от взрыва далекой сверхновой, как телескоп «Субару» открыл более 1800 кандидатов в сверхновые и как сверхмощная сверхновая оказалась обычной в оболочке.

Александр Войтюк

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: