Понимание выходного зрачка в биноклях


Виды и особенности окуляров для телескопов

Окуляры телескопов предназначены для увеличения первичного изображения, которое строится объективом в фокальной плоскости. В разных условиях наблюдений, в зависимости от светосилы и размеров поля зрения телескопа рекомендуется применять окуляры различных конструкций.

Для короткофокусных свето­сильных телескопов-рефлекторов системы Ньютона, создающих большие абер­рации, нужны более сложные окуляры, которые могли бы уменьшить искажения изображений. Требования к окулярам для телескопов-рефракторов, рефлекторов системы Кассегрена и катадиоптрических телескопов менее строги.

Различные виды окуляров для телескопов. Да, выбор здесь не меньше, чем у фотографов!

В телескопах с широким полем зрения часто используют окуляры Эрфле и Кёнига. При малых увеличениях (в телескопах различных типов) можно довольствоваться менее сложными (и пото­му более дешевыми) окуляром Рамсдена и его разновидностью — хро­матическим окуляром Рамсдена, который нередко путают с несколько иным по конструкции окуляром Кельнера.

Окуляры более сложной конструкции, например ортоскопический окуляр и окуляр Плёсла, создают качественное изображение в телескопах, фокусные расстояния которых меняются в широких пределах; эти окуляры также более удобны для тех, кто носит очки. Как обычно, для уменьшения потерь света и достижения максимальной контрастности линзы окуляра следует покрывать просветляющей пленкой.

Увеличение телескопов и окуляров

Основная характеристика окуляра — фокусное расстояние. Поделив фо­кусное расстояние объектива на фокусное расстояние окуляра, можно определить увеличение телескопа. Например, если фокусное расстоя­ние окуляра равно 25 мм, а объектива — 1 м, то увеличение телеско­па — 40 раз.

Нередко значения фокусных расстояний окуляров (и телескопов), указанные на их корпусах, слегка отличаются от реальных, поэтому увеличение телескопа лучше измерять самим.

Для этого направьте телескоп на равномерно освещенную поверхность, например на небо, и возможно точнее определите диаметр d светящегося изображения выходного зрачка. Чтобы получить увеличение, поделите диаметр линзы объектива (или первичного зеркала телескопа) на диаметр выходного зрачка. Этот сравнительно простой метод позволяет до­вольно точно определить увеличение телескопа.

Нетрудно вычислить и поле зрения телескопа. Приближенно оно равно 30°, деленным на увеличение окуляра, но это значение несколько варьируется в зависимости от типа окуляра. На практике диаметр поля зрения телескопа можно определить по времени, в течение которого изображение звезды пересекает поле зрения неподвижного телескопа. Это время, выраженное в угловых единицах, указывает размер поля зрения телескопа.

Звездное скопление Плеяды в телескоп.

Для таких измерений следует выбирать звезду, находящуюся возможно ближе к небесному экватору. При использовании биноклей и иска­телей с широким полем зрения эта процедура занимает немного времени, к тому же при работе с такими приборами редко возникает необходимость в точном знании размера их поля зрения.

Для его оценки рекомендуется одновременное наблюдение двух звезд, угловое расстояние между которыми известно. Это могут быть две звезды, расположенные на экваторе, две звезды с одинаковыми прямыми восхождениями и разными склонениями либо скопления звезд, в которых хорошо известны положения ярких звезд — идеальным в этом отношении является скопление Плеяды.

Целесообразно записать значения увеличений и размеров поля зрения вашего телескопа при использовании различных окуляров; эти записи особенно пригодятся, когда вы попытаетесь обнаружить сла­бые небесные объекты. Не менее полезны также зарисовки в масштабе поля зрения бинокля или искателя; эти рисунки делают на кальке или прозрачной пленке, которые затем можно прикладывать к построен­ным вами звездным картам.

Объектив и окуляр микроскопа

материалы » Микроскопы » Статьи о микроскопах, микропрепаратах и исследованиях микромира » Объектив и окуляр микроскопа
В одной из наших предыдущих статьей мы рассказывали о механической системе микроскопа. Пришло время поговорить и об оптической. Самые важные и незаменимые ее элементы – объектив и окуляр микроскопа. Иногда этих аксессуаров бывает несколько – все зависит от модели оптического прибора. В детских микроскопах редко встретишь больше одного объектива и одного окуляра. А вот комплектация профессиональной модели может включать, например, шесть объективов и четыре окуляра. Зачем такое разнообразие – давайте разбираться!

Окуляр устанавливается сверху, в него мы смотрим. Вместе с монокулярным микроскопом поставляется как минимум один окуляр, а вот для бинокулярных моделей нужна уже хотя бы пара. Объектив микроскопа – аксессуар, который «смотрит» на образец. Он расположен прямо над предметным столиком. В самые простые детские микроскопы устанавливают один объектив, в микроскопы любительского и профессионального уровня – не менее трех. Если объективов несколько, они фиксируются в револьверном устройстве – механизме, который позволяет их менять прямо во время наблюдений.

У каждого окуляра и объектива есть свое увеличение. А увеличение микроскопа высчитывается по формуле: кратность окуляра умножить на кратность объектива. Поэтому чем больше в комплекте поставки окуляров и объективов, тем больше в микроскопе вариантов увеличений. Рассмотрим на примере. Есть два окуляра кратностью 10х и 12,5х и три объектива с кратностью 10х, 40х и 100х. На какое увеличение микроскопа можно рассчитывать? Ответ в табличке ниже.

Объектив 10хОбъектив 40хОбъектив 100х
Окуляр 10х1004001000
Окуляр 12,5х1255001250

Например, мы видим, что взяв окуляр 10х и объектив 40х микроскопа, мы получили увеличение в 400 крат. Это простое перемножение характеристик выбранных оптических аксессуаров.

В нашем интернет-магазине вы можете найти микроскопы с разной комплектацией и возможностями. Раздел представлен по ссылке.

4glaza.ru Март 2018

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Смотрите также

Другие обзоры и статьи о микроскопах, микропрепаратах и микромире:

  • Видео! Микроскоп Levenhuk 870T: видео радиоактивной воды (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видеообзор (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видео соленой воды (канал MAD SCIENCE, Youtube.com)
  • Медицинские микроскопы Levenhuk MED: обзорная статья на сайте levenhuk.ru
  • Видео! Портативный микроскоп Bresser National Geographic 20–40x и другие детские приборы линейки: видеообзор (канал «Татьяна Михеева», Youtube.com)
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Видео бактерий под микроскопом Levenhuk Rainbow 2L PLUS (канал «Микромир под микроскопом», Youtube.ru)
  • Обзор микроскопа Levenhuk Rainbow 50L PLUS на сайте levenhuk.ru
  • Видео! Подробный обзор серии детских микроскопов Levenhuk LabZZ M101 (канал Kent Channel TV, Youtube.ru)
  • Обзор набора оптической техники Levenhuk LabZZ MTВ3 (микроскоп, телескоп и бинокль) на сайте levenhuk.ru
  • Видео! Микроскоп Levenhuk DTX 90: распаковка и видеообзор цифрового микроскопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Видеопрезентация увлекательной и красочной книги для детей «Невидимый мир» (канал LevenhukOnline, Youtube.ru)
  • Видео! Большой обзор биологического микроскопа Levenhuk 3S NG (канал Kent Channel TV, Youtube.ru)
  • Микроскопы Levenhuk Rainbow 2L PLUS
  • Видео! Микроскопы Levenhuk Rainbow и LabZZ (канал LevenhukOnline, Youtube.ru)
  • Микроскоп Levenhuk Rainbow 2L PLUS Lime\Лайм. Изучаем микромир
  • Выбираем лучший детский микроскоп
  • Видео! Микроскопы Levenhuk Rainbow 2L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 2L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D2L: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D50L PLUS: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Обзор биологического микроскопа Levenhuk Rainbow 50L
  • Видео! Видеообзор школьных микроскопов Levenhuk Rainbow 2L и 2L PLUS: лучший подарок ребенку (канал KentChannelTV, Youtube.ru)
  • Видео! Как выбрать микроскоп: видеообзор для любителей микромира (канал LevenhukOnline, Youtube.ru)
  • Галерея фотографий! Наборы готовых микропрепаратов Levenhuk
  • Микроскопия: метод темного поля
  • Видео! «Один день инфузории-туфельки»: видео снято при помощи микроскопа Levenhuk 2L NG и цифровой камеры Levenhuk (канал LevenhukOnline, Youtube.ru)
  • Видео! Обзор микроскопа Levenhuk Rainbow 2L NG Azure на телеканале «Карусель» (канал LevenhukOnline, Youtube.ru)
  • Обзор микроскопа Levenhuk Фиксики Файер
  • Совместимость микроскопов Levenhuk с цифровыми камерами Levenhuk
  • Как работает микроскоп
  • Как настроить микроскоп
  • Как ухаживать за микроскопом
  • Типы микроскопов
  • Техника приготовления микропрепаратов
  • Галерея фотографий! Что можно увидеть в микроскопы Levenhuk Rainbow 50L, 50L PLUS, D50L PLUS
  • Сетка или шкала. Микроскоп и возможность проведения точных измерений
  • Обычные предметы под объективом микроскопа
  • Насекомые под микроскопом: фото с названиями
  • Инфузории под микроскопом
  • Изобретение микроскопа
  • Как выбрать микроскоп
  • Как выглядят лейкоциты под микроскопом
  • Что такое лазерный сканирующий микроскоп?
  • Микроскоп люминесцентный: цена высока, но оправданна
  • Микроскоп для пайки микросхем
  • Иммерсионная система микроскопа
  • Измерительный микроскоп
  • Микроскопы от самых больших профессиональных моделей до простых детских
  • Микроскоп профессиональный цифровой
  • Силовой микроскоп: для серьезных исследований и развлечений
  • Лечение зубов под микроскопом
  • Кровь человека под микроскопом
  • Галогенные лампы для микроскопов
  • Французские опыты – микроскопы и развивающие наборы от Bondibon
  • Наборы препаратов для микроскопа
  • Юстировка микроскопа
  • Микроскоп для ремонта электроники
  • Операционный микроскоп: цена, возможности, сферы применения
  • «Шкаловой микроскоп» – какой оптический прибор так называют?
  • Бородавка под микроскопом
  • Вирусы под микроскопом
  • Принцип работы темнопольного микроскопа
  • Покровные стекла для микроскопа – купить или нет?
  • Увеличение оптического микроскопа
  • Оптическая схема микроскопа
  • Схема просвечивающего электронного микроскопа
  • Устройство оптического микроскопа у теодолита
  • Грибок под микроскопом: фото и особенности исследования
  • Зачем нужна цифровая камера для микроскопа?
  • Предметный столик микроскопа – что это и зачем он нужен?
  • Микроскопы проходящего света
  • Органоиды, обнаруженные с помощью электронного микроскопа
  • Паук под микроскопом: фото и особенности изучения
  • Из чего состоит микроскоп?
  • Как выглядят волосы под микроскопом?
  • Глаз под микроскопом: фото насекомых
  • Микроскоп из веб-камеры своими руками
  • Микроскопы светлого поля
  • Механическая система микроскопа
  • Объектив и окуляр микроскопа
  • USB-микроскоп для компьютера
  • Универсальный микроскоп – существует ли такой?
  • Песок под микроскопом
  • Муравей через микроскоп: изучаем и фотографируем
  • Растительная клетка под световым микроскопом
  • Цифровой промышленный микроскоп
  • ДНК человека под микроскопом
  • Как сделать микроскоп в домашних условиях
  • Первые микроскопы
  • Микроскоп стерео: купить или нет?
  • Как выглядит раковая клетка под микроскопом?
  • Металлографический микроскоп: купить или не стоит?
  • Флуоресцентный микроскоп: цена и особенности
  • Что такое «ионный микроскоп»?
  • Грязь под микроскопом
  • Как выглядит клещ под микроскопом
  • Как выглядит червяк под микроскопом
  • Как выглядят дрожжи под микроскопом
  • Что можно увидеть в микроскоп?
  • Зачем нужны исследовательские микроскопы?
  • Бактерии под микроскопом: фото и особенности наблюдения
  • На что влияет апертура объектива микроскопа?
  • Аскариды под микроскопом: фото и особенности изучения
  • Как использовать микропрепараты для микроскопа
  • Изучаем ГОСТ: микроскопы, соответствующие стандартам
  • Микроскоп инструментальный – купить или нет?
  • Где купить отсчетный микроскоп и зачем он нужен?
  • Атом под электронным микроскопом
  • Как кусает комар под микроскопом
  • Как выглядит муха под микроскопом
  • Амеба: фото под микроскопом
  • Подкованная блоха под микроскопом
  • Вша под микроскопом
  • Плесень хлеба под микроскопом
  • Зубы под микроскопом: фото и особенности наблюдения
  • Снежинка под микроскопом
  • Бабочка под микроскопом: фото и особенности наблюдений
  • Самый мощный микроскоп – как выбрать правильно?
  • Рот пиявки под микроскопом
  • Мошка под микроскопом: челюсти и строение тела
  • Микробы на руках под микроскопом – как увидеть?
  • Вода под микроскопом
  • Как выглядит глист под микроскопом
  • Клетка под световым микроскопом
  • Клетка лука под микроскопом
  • Мозги под микроскопом
  • Кожа человека под микроскопом
  • Кристаллы под микроскопом
  • Основное преимущество световой микроскопии перед электронной
  • Конфокальная флуоресцентная микроскопия
  • Зондовый микроскоп
  • Принцип работы сканирующего зондового микроскопа
  • Почему трудно изготовить рентгеновский микроскоп?
  • Макровинт и микровинт микроскопа – что это такое?
  • Что такое тубус в микроскопе?
  • Главная плоскость поляризатора
  • На что влияет угол между главными плоскостями поляризатора и анализатора?
  • Назначение поляризатора и анализатора
  • Метод изучения – микроскопия на практике
  • Микроскопия осадка мочи: расшифровка
  • Анализ «Микроскопия мазка»
  • Сканирующая электронная микроскопия
  • Методы световой микроскопии
  • Оптическая микроскопия (световая)
  • Световая, люминесцентная, электронная микроскопия – разные методы исследований
  • Темнопольная микроскопия
  • Фазово-контрастная микроскопия
  • Поляризаторы естественного света
  • Шотландский физик, придумавший поляризатор
  • Механизм фокусировки в микроскопе
  • Что такое полевая диафрагма?
  • Микроскоп Микромед: инструкция по эксплуатации
  • Микроскоп Микмед: инструкция по эксплуатации
  • Где найти инструкцию микроскопа «ЛОМО»?
  • Микроскопы Micros: руководство пользователя
  • Какую функцию выполняют зажимы на микроскопе
  • Рабочее расстояние объектива микроскопа
  • Микропрепарат для микроскопа своими руками
  • Метод висячей капли
  • Метод раздавленной капли
  • Тихоходка под микроскопом
  • Аппарат Гольджи под микроскопом
  • Чем занять детей дома?
  • Чем заняться на карантине дома?
  • Чем заняться школьникам на карантине?
  • Выбираем микроскоп: отзывы имеют значение?
  • Микроскоп для школьника: какой выбрать?
  • Немного об оптовой закупке микроскопов и иной оптической техники
  • Во сколько увеличивает лупа?
  • Где купить лампу-лупу – косметологическую модель с подсветкой?
  • Какую купить лампу-лупу для маникюра?
  • Можно ли купить лампу-лупу для наращивания ресниц в интернет-магазине?
  • Лампа-лупа косметологическая на штативе: купить домой или нет?
  • Лупа бинокулярная с принадлежностями
  • Как выглядит лупа для нумизмата?
  • Лупа-лампа – лупа для рукоделия с подсветкой
  • «Лупа на стойке» – что это за оптический прибор?
  • Лупа – проектор для увеличенного изображения
  • Делаем лупу своими руками
  • Основные функции лупы
  • Где найти лупу?
  • Лупа бинокулярная – цена возможностей
  • Лупа канцелярская: выбираем оптическую технику для офиса
  • Как выглядит коронавирус под микроскопом?
  • Как называется главная часть микроскопа?

Выбор увеличения телескопа

Минимальное полезное увеличение бинокля или телескопа достигается, когда вы­ходной зрачок равен по размеру расширенному зрачку глаза (он составляет около 8 мм). Поэтому при наблюдениях в телескоп с объективом диаметром 150 мм минимальное необходимое увеличение должно равняться 150:8 = 18,75.

На практике допустимо большое увеличение, за исключением очень специфических наблюде­ний, например поиска комет и новых звезд.

Выбор того или иного окуляра зависит от требований к величине поля зрения. Начинающие астрономы-любители стремятся проводить наблюдения при максимально возможном увеличении, но, как пока­зывает опыт, это редко способствует улучшению разрешения: далеко не всегда большее увеличение позволяет увидеть больше деталей.

Комета наблюдаемая в телескоп - тот случай, когда максимальное увеличение скорее смажет картинку

К тому же изображения протяженных объектов, подобных планетам или туманностям, при больших увеличениях становятся более слабыми, поскольку одно и то же количество света распределяется по большей поверхности.

Как утверждает теория, изображение звезды в хороший телескоп представляет собой точку независимо от увеличения, однако на практике это не всегда так. При некоторых видах наблюдений желательно возможно большее увеличение: так, при наблюдениях переменных звезд большое увеличение ослабляет яркость мешающего фона неба и расширяет плотные звездные поля.

Довольно точную оценку нормального увеличения телескопа дает диаметр объектива, выраженный в миллиметрах; предельно допу­стимое увеличение вдвое больше этой величины. Временами, когда условия видимости исключительно благоприятны, можно работать и с несколько большим увеличением.

Для рефлектора с D = 150 мм и f/6 и рефрактора с D = 75 мм и f/12 (при фокусном расстоянии обоих 900 мм) целесообразно использовать окуляры с фокусными расстоя­ниями 25 (или 24), 18 12 и 6 мм, которые обеспечивают увеличение соответственно в 36, 50, 75 и 150 раз. В зависимости от типа эти телескопы должны иметь поле зрения около 50′, 36′, 24′ и 12′ соответственно.

Совет 5 : выбор окуляров по размеру и выносу выходного зрачка и полю зрения

Ещё одним важным моментом, характеризующим работу окуляров, можно назвать размер выходного зрачка и его поле зрения. Поле зрения окуляра — это величина, которая показывает, насколько большую часть звёздного неба можно увидеть в окуляры различной кратности. Поле зрения бывает двух видов — истинное FOV`, которое даёт телескоп вместе с окуляром, и собственное поле зрения окуляра FOV, которое зачастую написано на нём в виде символов UWA или в других сочетаниях букв. Зная это собственное поле, можно рассчитать истинное: FOV` = FOV /(увеличение телескопа) ; Истинное поле зрения примерно бывает равным от 0,1° до 2,1° . Например, для окуляра STURMAN ED Explorer 8mm 60° при использовании на телескопе Sky Watcher 1309 EQ2 истинное поле зрения будет равно: Увеличение = 900/8=112,5 крат ; FOV` = 60°/112,5 = 0,53°. Итак, получен угловой размер в градусах определённого участка неба, который можно увидеть в этот окуляр с данным телескопом. Чтобы увидеть всё поле зрения необходимо знать расстояние от наружной линзы окуляра до той точки, где должен находиться зрачок глаза. Это расстояние и есть вынос выходного зрачка. Вынос зрачка задаётся самим окуляром, но, как правило, он составляет где-то от 2 до 15 — 20 миллиметров, но не более 25мм и лучше всего, когда он равен 6 мм. Например, у всё того же окуляра STURMAN ED Explorer 8mm он не превышает 13 миллиметров, у VIXEN NLV 6mm — 20мм. Регулировка выноса в этих окулярах производится вращением наглазника. Чем больше вынос зрачка, тем дальше глаз от окуляра и более высокое удобство при наблюдениях. Наверное, все знают, что зрачок глаза человека имеет свойство увеличиваться либо уменьшаться в зависимости от степени окружающего света. Так вот, в ночное время при полной темноте диаметр зрачка, как правило, не превышает больше, чем 7 миллиметров. Также в полной освещённости диаметр зрачка не бывает менее 0,5 миллиметров. Поэтому, существует ещё и такое понятие как размер выходного зрачка телескопа. Всё дело в выборе увеличений окуляров. Как уже говорилось, не желательно использовать окуляр с отношением менее D/7. Дело в том, что это отношение подразумевает под собой равнозрачковый окуляр — окуляр с диаметром выходного зрачка равным человеческому зрачку, полностью адаптированному к полной темноте. Если выбирать окуляр с отношением менее D/7, то слишком малое увеличение телескопа даст размер выходного зрачка таким, что он просто будет более 7мм, то есть больше человеческого зрачка, вызывая отсечение изображения по краям и дискомфорт при наблюдениях. Так как же рассчитывается размер выходного зрачка телескопа? Он рассчитывается по формуле: РВЗ = D/(увеличение телескопа) ; Например, для телескопа Sky Watcher 1309 EQ2 и окуляров STURMAN ED Explorer 8mm, VIXEN NLV 6mm и Sky Watcher Wide Angle 2,5mm РВЗ будет равно: D = 130мм — диаметр главного зеркала, увеличение с окуляром STURMAN ED = 112,5 крат, с VIXEN NLV = 150 крат, с Sky Watcher 2,5mm = 360 крат. В первом случае РВЗ равен: 130 / 112,5 = 1,1мм, во втором случае: 130 / 150 = 0,86мм. В третьем: 130 / 360 = 0,36, то есть в первых двух случаях окуляры полностью работоспособны, а вот Sky Watcher Wide Angle 2,5mm мало того, что не подходит по увеличению, тут же автоматически признаётся негодным по параметру РВЗ — менее 0,5мм. Проще всего составить таблицу и всё туда заносить:

ПРИМЕРНАЯ ТАБЛИЦА ПАРАМЕТРОВ ОКУЛЯРОВ ДЛЯ ТЕЛЕСКОПА SKY WATCHER 1309

Вот и все расчёты. Конечно, можно ничего и не рассчитывать, но в таком случае ничему не удивляйтесь. Качество изображения и всего прочего скажет само за себя. Я же при выборе окуляров и другого оборудования перед покупкой всегда всё многократно пересчитываю и в результате полностью доволен и покупками, и эмоциями, и не забывающимися впечатлениями от увиденного!

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: