Самая большая планета в галактике: предполагаемые размеры


Приветствуем Вас, дорогие читатели, на нашем сайте!

Здесь вы сможете узнать множество интересных и зажигательных историй, множество фактов и объяснений в мире. На нашем сайте вы найдете много полезной и интересной информации из различных областей науки, спорта, природы, животных и многое многое другое. Читайте и делитесь с друзьями!

В данной статье мы с Вами узнаем – Самые большие звезды во Вселенной.

Звезды — огромные шары горящей плазмы. Но, за исключением Солнца, они выглядят как крошечные точки света на ночном небе.  При этом наше Солнце - не самая маленькая или большая звезда.

Есть много гораздо более массивных и больших звезд, чем Солнце. Некоторые из них эволюционировали с момента своего образования. Другие растут по мере «старения».

Чтобы ответить на вопрос о том, какая звезда самая большая во Вселенной, мы «отсортировали» звезды по такому признаку как размер. За единицу измерения звездного радиуса был взят экваториальный радиус Солнца, который составляет 696 392 километра.

Сравнительные размеры звезд

Астрономы оценивают величину звёзд по шкале, согласно которой, чем ярче звезда, тем меньше её номер. Каждый последующий номер соответствует звезде, в десять раз менее яркой, чем предыдущая. Самой яркой звездой ночного неба во Вселенной является Сириус. Его видимая звёздная величина составляет -1.46, а это значит, что он в 15 раз ярче звезды с нулевой величиной.

Звёзды, чья величина составляет 8 и более невозможно увидеть невооружённым взглядом. Звёзды также разделяются по цветам на спектральные классы, указывающие на их температуру. Существуют следующие классы звёзд Вселенной: O, B, A, F, G, K, и M.

Классу О соответствуют самые горячие звёзды во Вселенной– голубого цвета. Самые холодные звёзды относятся к классу М, их цвет красный.

КлассТемпература,KИстинный цветВидимый цветОсновные признаки
OголубойголубойСлабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
Bбело-голубойбело-голубой и белыйЛинии поглощения гелия и водорода. Слабые линии H и К Ca II.
AбелыйбелыйСильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
Fжёлто-белыйбелыйСильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
GжёлтыйжёлтыйЛинии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
Kоранжевыйжелтовато-оранжевыйЛинии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
Mкрасныйоранжево-красныйИнтенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Вопреки всеобщему заблуждению, стоит отметить, что звёзды Вселенной на самом деле не мерцают. Это лишь оптический обман – результат атмосферной интерференции. Похожий эффект можно наблюдать жарким летним днём, глядя на раскалённый асфальт или бетон.

Горячий воздух поднимается, и кажется, будто вы смотрите сквозь дрожащее стекло. Тот же процесс вызывает иллюзию звёздного мерцания. Чем ближе звезда к Земле, тем больше она будет «мерцать», потому что её свет проходит через более плотные слои атмосферы.

Типы звезд Вселенной

Главная последовательность – это период существования звезд Вселенной, во время которого внутри её проходит ядерная реакция, являющийся самым длинным отрезком жизни звезды. Наше Солнце сейчас находится именно в этом периоде. В это время звезда претерпевает незначительные колебания в яркости и температуре.

Самые большие звезды во Вселенной

Продолжительность такого периода зависит от массы звезды. У крупный массивных звёзд он короче, а у мелких длиннее. Очень большим звёздам внутреннего топлива хватает на несколько сотен тысяч лет, в то время, как малые звёзды, как Солнце, будут сиять миллиарды лет.

Красный гигант – это крупная звезда красноватого или оранжевого цвета.

Она представляет собой позднюю стадию цикла, когда запасы водорода подходят к концу и гелий начинает преобразовываться в другие элементы. Повышение внутренней температуры ядра приводит к коллапсу звезды.

Внешняя поверхность звезды расширяется и остывает, благодаря чему звезда приобретает красный цвет. Красные гиганты очень велики. Их размер в сто раз больше обычных звёзд.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Самые большие звезды во Вселенной

Белый карлик – это то, что остаётся от обычной звезды, после того, как она проходит стадию красного гиганта. Когда у звезды больше не остаётся топлива, она может выделять часть своей материи в космос, образуя планетарную туманность. То, что остаётся – это мёртвое ядро.

Ядерная реакция в нем не возможна. Оно сияет за счёт своей оставшейся энергии, но она рано или поздно кончается, и тогда ядро остывает, превращаясь в чёрного карлика. Белые карлики – очень плотные.

По размеру они не больше Земли, но массу их можно сравнить с массой Солнца. Это невероятно горячие звёзды, их температура достигает 100,000 градусов и более.

Коричневого карлика ещё называют субзвездой.

Во время своего жизненного цикла некоторые протозвёзды никогда не достигают критической массы, чтобы начать ядерные процессы. Если масса протозвезды составляет лишь 1/10 массы Солнца, её сияние будет недолгим, после чего она быстро гаснет.

Самые большие звезды во Вселенной

То, что остаётся и есть коричневый карлик. Это массивный газовый шар, слишком большой, чтобы быть планетой, и слишком, маленький, чтобы стать звездой. Он меньше Солнца, но в несколько раз больше Юпитера.

Коричневые карлики не излучают ни света, ни тепла. Это лишь тёмный сгусток материи, существующий на просторах Вселенной.

Цефеида – это звезда с переменной светимостью, цикл пульсации которой колеблется от нескольких секунд до нескольких лет, в зависимости от разновидности переменной звезды.

Цефеиды обычно изменяют свою светимость в начале жизни и в её завершении. Они бывают внутренними (изменяющими светимость в связи с процессами внутри звезды) и внешними, меняющими яркость вследствие внешних факторов, как, например, влияние орбиты ближайшей звезды. Это ещё называется двойной системой.

Многие звёзды во Вселенной являются частью больших звёздных систем. Двойные звёзды – это система из двух звёзд, гравитационно-связанных между собой. Они вращаются по замкнутым орбитам вокруг одного центра масс.

Доказано, что половина всех звёзд нашей галактики имеют пару. Визуально парные звёзды выглядят, как две отдельные звезды. Их можно определить по смещению линий спектра (эффект Доплера).

Звёздные каталоги

Главной страстью жившего в XVIII веке французского астронома Шарля Мессье были кометы. Его смущало только то, что в звёздном небе было довольно много неподвижных объектов, которые легко было спутать с кометами. Чтобы внести ясность, Мессье решил создать каталог, в который включил все наблюдаемые им звёздные скопления и туманности. Правда, оптические приборы того времени не отличались высокой разрешающей способностью, поэтому в каталог Мессье попало много всякого космического добра: и далёкие галактики, и планетарные туманности, и всевозможные скопления. Первое издание содержало перечень из 45 объектов, однако позднее английский астроном Уильям Гершель расширил его до 102. В таком виде каталог Мессье был впервые издан в 1784 году. Надо отметить, что в этот каталог в основном вошли туманности и скопления, которые можно было наблюдать в Северном полушарии, и для некоторых из них номер в каталоге до сих пор остаётся основным названием.
Помимо каталога Мессье, широко известен Новый общий каталог туманностей и звёздных скоплений (NGC). Этот каталог составил Джоном Дрейером по информации, собранной вышеупомянутым Гершелем. В первоначальной редакции в него вошли уже 7840 объектов, причём наблюдаемых не только в Северном, но и в Южном полушарии. Немного позже он был расширен двумя Индекс-каталогами туманностей и звёзд, после чего перечень объектов увеличился до 13 226. На данный момент NGC — один из крупнейших неспециализированных каталогов.

Оба каталога — и Мессье, и NGC — для многих астрономов-любителей по сей день служат своеобразной «звёздной азбукой», которая помогает им в первых космических исследованиях.

Загадочный кластер Пандоры, рассмотренный благодаря гравитационной линзе (Фото: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

Жизненный цикл звезд Вселенной

Звезда во Вселенной начинает свою жизнь в виде облака пыли и газа, называемого туманностью. Гравитация соседней или взрывная волна сверхновой звезды могут заставить туманность сжиматься. Элементы газового облака объединяются в плотную область, называемую протозвездой. В результате последующего сжатия протозвезда нагревается. В итоге, она достигает критической массы, и начинается ядерный процесс; постепенно звезда проходит все фазы своего существование. Первый (ядерный) этап жизни звезды – самый долгий и стабильный.

Самые большие звезды во Вселенной

Продолжительность жизни звезды зависит от её размера. Крупные звёзды расходуют своё жизненное топливо быстрее. Их жизненный цикл может длиться не более нескольких сотен тысяч лет. А вот маленькие звёзды живут многие миллиарды лет, так как тратят свою энергию медленнее.

Но, как бы то ни было, рано или поздно, звёздное топливо кончается, и тогда маленькая звезда превращается в красного гиганта, а крупная звезда – в красного супергиганта. Эта фаза продлиться до тех пор, пока топливо не израсходуется окончательно. В этот критический момент внутреннее давление ядерной реакции ослабнет и больше не сможет уравновешивать силу гравитации, и, в результате, произойдет коллапс звезды. Затем небольшие звёзды Вселенной, как правило, перевоплощаются в планетарную туманность с ярким сияющим ядром, называемым белым карликом. Со временем и он остывает, превращаясь в тёмный сгусток материи – чёрного карлика.

У больших звезд всё происходит немного иначе. Во время коллапса они высвобождают невероятное количество энергии, и мощный взрыв рождает сверхновую звезду. Если её величина составляет 1.4 величины Солнца, тогда, к сожалению, ядро не сможет поддерживать своё существование и, после очередного коллапса, сверхновая звезда станет нейтронной. Внутренняя материя звезды сожмётся до такой степени, что атомы образуют плотную оболочку, состоящую из нейтронов. Если же звёздная величина в три раза больше солнечной, то коллапс её просто уничтожит, сотрёт с лица Вселенной.

Самые большие звезды во Вселенной

Туманность, оставшаяся после звезды Вселенной, может расширяться в течение миллионов лет. В конце концов, на неё подействует гравитация соседней или взрывная волна сверхновой звезды и всё повторится снова. Этот процесс будет происходить по всей Вселенной – бесконечный цикл жизни, смерти и возрождения.

Результатом этой звёздной эволюции является образование тяжёлых элементов, необходимых для жизни. Наша солнечная система произошла из второго или третьего поколения туманности, и благодаря этому на Земле и других планетах есть тяжёлые элементы. А это значит, что в каждом из нас есть частички звёзд.

Самая молодая звезда во вселенной

  • Всего2
  • 0
  • 0

Недавно обнаруженная нейтронная звезда, известная как Swift J1818.0-1607, поразительна: согласно новому исследованию, опубликованному в журнале Astrophysical Journal Letters, ей всего около 240 лет – она настоящий новорожденный ребенок по космическим меркам.

Обсерватория Neil Gehrels Swift заметила молодой объект 12 марта, когда он выпустил массивный всплеск рентгеновских лучей. Последующие исследования обсерватории XMM-Newton Европейского космического агентства и телескопа NuSTAR НАСА, которым руководит Caltech и управляет Лаборатория реактивного движения агентства, выявили больше физических характеристик нейтронной звезды, включая те, которые использовались для оценки ее возраста.

Нейтронная звезда – это невероятно плотный сгусток звездного материала, оставшийся после того, как массивная звезда становится сверхновой.

Фактически, нейтронные звезды являются одними из самых плотных объектов во вселенной (уступая только черным дырам): чайная ложка материала нейтронной звезды весит 4 миллиарда тонн на Земле.

Атомы внутри нейтронной звезды так сильно сжаты вместе, что ведут себя так, как нигде больше. Swift J1818.0-1607 вмещает вдвое большую массу нашего Солнца в объем, более чем в триллион раз меньший.

С магнитным полем, которое в 1000 раз сильнее, чем у обычной нейтронной звезды, и примерно в 100 миллионов раз сильнее, чем самые мощные магниты, созданные человеком, Swift J1818.0-1607 принадлежит к особому классу объектов, называемых магнетарами, которые являются наиболее сильными магнитными объектами во вселенной.

И это, похоже, самый молодой магнит из когда-либо обнаруженных. Если возраст звезды подтвердится, это означает, что свет от звездного взрыва, который сформировал его, достиг Земли примерно в 1780 году, во время правления Екатерины Великой.

Смотрите также

Астрономия

Обнаружены два странных коричневых карлика

12.07.2020

Исследование космоса

Зонд Parker Solar Probe увидел три хвоста у кометы C/2020 F3 (NEOWISE)

11.07.2020

«Этот объект показывает нам более раннее время в жизни магнетара, чем мы когда-либо видели прежде, очень скоро после его создания», – сказала Нанда Ри из Института космических наук в Барселоне и главный исследователь кампаний XMM Newton и NuSTAR.

В то время как существует более 3000 известных нейтронных звезд, ученые определили только 31 подтвержденный магнетар – включая эту новейшую запись. Поскольку их физические свойства не могут быть воссозданы на Земле, нейтронные звезды (включая магнетары) являются естественными лабораториями для проверки нашего понимания физического мира.

Swift J1818.0-1607 расположен в созвездии Стрельца и относительно близко к Земле – всего на расстоянии около 16 000 световых лет. (Поскольку свету требуется время, чтобы пройти эти космические расстояния, мы видим свет, излучаемый нейтронной звездой около 16 000 лет назад, когда ей было около 240 лет.)

Многие научные модели предполагают, что физические свойства и поведение магнетаров меняются с возрастом и что магнетары могут быть наиболее активными, когда они моложе. Таким образом, поиск более молодого образца поможет улучшить эти модели.

Хотя нейтронные звезды имеют ширину всего от 15 до 30 км, они могут излучать огромные вспышки света наравне с гораздо более крупными объектами. В частности, магнетары были связаны с мощными извержениями, достаточно яркими, чтобы их можно было увидеть по всей вселенной.

Учитывая экстремальные физические характеристики магнетаров, ученые считают, что существует множество способов, с помощью которых они могут генерировать такое огромное количество энергии.

P. Esposito et al. A Very Young Radio-loud Magnetar, The Astrophysical Journal (2020). DOI: 10.3847/2041-8213/ab9742

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

5 1 голос

Рейтинг

Подписывайтесь на наш новый канал в и наши каналы в соц.сетях

Крупнейшая из известных?

Сравнение размеров Солнца и звезды UY Щита. Солнце — почти невидимый пиксель слева от UY Щита.

Сверхгигант UY Щита с некоторой оговоркой можно назвать самой крупной звездой из наблюдаемых в наши дни. Почему «с оговоркой» будет сказано ниже. UY Щита удалён от нас на 9500 световых лет и наблюдается как тусклая переменная звёздочка, различимая в небольшой телескоп. По оценкам астрономов, её радиус превышает 1700 радиусов Солнца, а в период пульсации этот размер может увеличиться до целых 2000.

Гипергигант VY Большого Пса выбрасывает огромное количество газа во время своей вспышки

Получается, помести такую звезду на место Солнца, нынешние орбиты планеты земной группы оказались бы в недрах сверхгиганта, а границы её фотосферы временами упирались бы в орбиту Сатурна. Если представить нашу Землю как гречневую крупицу, а Солнце – арбуз, то диаметр UY Щита будет сопоставим с высотой Останкинской телебашни.

Чтобы облететь такую звезду со скоростью света понадобится целых 7-8 часов. Вспомним, что свет, испущенный Солнцем, доходит до нашей планеты всего за 8 минут. Если лететь с той же скоростью, с какой МКС за полтора часа совершает один оборот вокруг Земли, то полёт вокруг UY Щита продлится почти пять лет. Теперь представим эти масштабы, учитывая, что МКС летит в 20 быстрее пули и в десятки раз – пассажирских авиалайнеров.

Масса и светимость UY Щита

Стоит заметить, что столь чудовищный размер UY Щита совершенно несопоставим с другими её параметрами. Эта звезда «всего лишь» в 7-10 раз массивнее Солнца. Получается, средняя плотность этого сверхгиганта почти в миллион раз ниже плотности, окружающего нас, воздуха! Для сравнения, плотность Солнца в полтора раза превышает плотность воды, а крупица материи нейтронной звезды и вовсе «весит» миллионы тон.

VY Большого Пса и Солнце

Грубо говоря, усреднённая материя такой звезды по плотности подобна слою атмосферы, расположенного на высоте около ста километров над уровнем моря. Этот слой, также называемый, линией Кармана, являет собой условную границу между земной атмосферой и космосом. Получается, плотность UY Щита лишь немногим не дотягивает до космического вакуума!

Также UY Щита не является самой яркой.

Обладая собственной светимостью 340 000 солнечных, он в десятки раз тусклее самых ярких звёзд. Хорошим примером является звезда R136, которая, являясь самой массивной из известных ныне звёзд (265 солнечных масс), ярче Солнца почти в девять миллионов раз. При этом звезда всего лишь в 36 раз больше Солнца. Получается, R136 в 25 раз ярче и примерно во столько же раз массивнее UY Щита, при том, что она в 50 раз меньше исполина.

1. UY Щита (UY Scuti) – самая большая звезда во вселенной

Самая большая звезда во вселенной – UY Щита

UY Щита в небе

Изучение сверхгиганта

Летом 2012 года астрономы, при помощи комплекса Very Large Telescope, расположенного в пустыне Атакама в Чили, измеряли параметры трех красных сверхгигантов вблизи области Галактического центра. Объектами изучения были UY Щита, AH Скорпиона и KW Стрельца.

UY Щита и Солнце

Ученые определили, что все три звезды в 1000 раз крупнее и более чем в 100 тысяч раз ярче Солнца. Также они сделали открытие, что UY Щита является самой большой, самой яркой из всех трех звезд. Из радиуса и светимости была получена эффективная температура — 3665 ± 134 К.

Масса и размеры UY Щита по сравнению с Солнцем

Точная масса этой звезды неизвестна, прежде всего потому, что у нее нет видимой звезды-спутника, благодаря которой ее масса может быть измерена с помощью изучения гравитационных помех. Согласно звездным эволюционным моделям начальная масса звезды (при ее формировании), соответствующая красной сверхгигантской стадии, такой как у UY Щита, была бы около 25 M☉ (возможно, до 40 M☉ для невращающейся звезды) и постоянно сгорала. Предположительно, ее нынешняя масса составляет 7-10 M☉ и продолжает уменьшаться. UY Щита является не только самой большой, но и самой быстро сгорающей звездой из ныне известных науке.

UY Щита по сравнению с Солнцем

Масса UY Щита чуть более чем в 30 раз превышает массу нашего Солнца, что даже не приближается к вершине списка самых массивных звезд. Эта честь принадлежит звезде R136a1, которая в 265 раз превосходит Солнце по массе, но при этом по радиусу лишь в 30 раз превышает радиус Солнца.

Массовый и физический размеры не всегда коррелируют для небесных тел, особенно для гигантских звезд.  Таким образом, хотя UY Щита только в 30 раз массивнее, чем Солнце, она имеет радиус где-то в районе 1700 раз больше радиуса нашего дневного светила. Погрешность этого измерения составляет около 192 солнечных радиусов.

Возможна ли жизнь возле UY Scuti

Обитаемая зона или орбитальная зона с наивысшей вероятностью жизни — сложная вещь, возможность появления которой зависит от нескольких факторов. Планета, на которой зародилась жизнь, не должна находиться слишком далеко или слишком близко от звезды. По расчетам астрономов, обитаемая зона вокруг UY Щита будет составлять от 700 до 1300 астрономических единиц (АЕ). Это безумно большое расстояние. Число в километрах просто непостижимо — это около 149 597 870 700 км. Для сравнения: зона обитаемости в Солнечной системе находится на расстоянии от 0,95 до 1,37 АЕ от Солнца.

Зона обитаемости

Если живая планета находится на безопасном расстоянии, скажем, 923 астрономических единицы от UY Щита, год на ней будет длиться 9612 земных лет. Это почти 2500 лет зимы! И 2500 лет лета. То есть сменятся множество поколений, которые знают только одно время года.

UY Щита действительно может иметь планетарную систему в этой зоне, но если это произойдет, она не будет существовать очень долго. Вы, читатель, можете резонно спросить: «А почему»? Потому что будущее у звезды — уж слишком яркое.

Что ждет звезду в будущем

Основываясь на современных моделях эволюции звезд, ученые предполагают, что UY Щита начала сливать гелий в оболочку вокруг ядра. По мере истечения гелия звезда начнет сливать более тяжелые элементы, такие как литий, углерод, кислород, неон и кремний. Расположение звезды в глубине Млечного Пути говорит о том, что она богата металлом. После слияния тяжелых элементов ее сердцевина начнет производить железо, нарушая баланс тяжести и радиации, что приведет к появлению сверхновой. Это произойдет через миллион лет — не очень долго по астрономическим меркам, а вот у человечества есть время подготовиться к столь феерическому зрелищу.

После сверхновой UY Щита, скорее всего, превратится в желтый гипергигант, синюю переменную звезду или даже звезду Вольфа-Райе с очень высокой температурой и светимостью. В последнем случае она «родит» много новых звезд вслед за своей сверхновой.

VV Цефея

Красный гипергигант, претендующий на звание самой большой звезды во Вселенной. Увы, это не так, но очень близко. По размеру она на третьем месте.

Самая большая звезда во Вселенной

VV Цефея – затменно-переменная звезда, то есть двойная, и гигант в этой системе – компонент А, о нём и пойдет речь. Второй компонент – ничем особым не примечательная голубая звезда, в 8 раз больше Солнца. А вот красный гипергигант – еще и пульсирующая звезда, с периодом 150 суток. Её размеры могут меняться от 1050 до 1900 диаметров Солнца, и на максимуме она светит в 575 000 раз ярче нашего светила!

Сравнение размеров Солнца и различных более крупных звезд с VV Цефея. Эта звезда находится от нас в 5000 световых лет, и при этом на небе имеет яркость в 5.18 m, то есть при чистом небе и хорошем зрении её можно найти, а уж в бинокль вообще запросто.

Самые массивные объекты во Вселенной

Но, многие из нас могут также задаться вопросом: какой объект, из известных на сегодняшний день, является самым массивным во Вселенной?

В некотором смысле ответ на этот вопрос зависит от того, что мы понимаем под словом “объект”. Астрономы наблюдают структуры, такие как Великая стена Геркулес-Северная Корона – колоссальная нить газа, пыли и тёмной материи, содержащая миллиарды галактик. Её протяжённость составляет около 10 миллиардов световых лет, таким образом эта структура может носить имя самого крупного объекта. Но не всё так просто. Классификация этого скопления, как уникального объекта проблематична из-за того, что трудно точно определить, где она начинается и где заканчивается.

На самом деле в физике и астрофизике “объект” имеет чёткое определение, сказал Скотт Чепмен (Scott Chapman), астрофизик из Университета Дэлхаузи в Галифаксе:

“Это нечто, связанное вместе собственными гравитационными силами, например, планета, звезда или звёзды, вращающиеся вокруг общего центра масс.

Используя это определение становится, немного легче понять, что является самым массивным объектом во Вселенной. К тому же это определение может быть применено к различным объектам в зависимости от рассматриваемой шкалы.

Для нашего относительно крошечного вида, планета Земля, с её 6 септиллионами килограммов, кажется огромной. Но это даже не самая большая планета в Солнечной системе. Газовые гиганты: Нептун, Уран, Сатурн и Юпитер значительно крупнее. Масса Юпитера, например, составляет 1,9 октиллиона килограмм. Исследователи обнаружили тысячи планет, вращающихся вокруг других звёзд, в том числе много таких на фоне которых наши газовые гиганты выглядят маленькими. Обнаруженная в 2020 году, HR2562 b – самая массивная экзопланета, приблизительно в 30 раз массивнее, чем Юпитер. При таком размере астрономы не уверены, следует ли считать её планетой или отнести к классу карликовых звёзд.

При этом звёзды могут вырасти до огромных размеров. Самой массивной, известной звездой является R136a1, её масса от 265 и 315 раз больше массы нашего Солнца (2 нониллиона килограмм). Расположенная на расстоянии 130 000 световых лет от Большого Магелланова Облака – нашей спутниковой галактики, эта звезда настолько ярка, что свет, который она излучает, фактически разрывает её. Согласно исследованию 2010 года электромагнитное излучение, исходящее от звезды настолько мощное, что может уносить материал с её поверхности, заставляя звезду терять около 16 земных масс каждый год. Астрономы точно не знают, как могла сформироваться такая звезда, и как долго она будет существовать.

Следующими массивными объектами являются галактики. Диаметр нашей собственной галактики Млечный Путь составляет около 100 000 световых лет, она содержит примерно 200 миллиардов звёзд, общим весом около 1,7 триллионов солнечных масс. Однако Млечный Путь не может конкурировать с центральной галактикой кластера Феникс, расположенной в 2,2 миллионах световых лет, и содержащей около 3 триллионов звёзд. В центре этой галактики находится сверхмассивная чёрная дыра – самая большая из когда-либо обнаруженных – с примерной массой в 20 миллиардов Солнц. Сам кластер Феникс является огромным скоплением, состоящим приблизительно из 1000 галактик с общей массой около 2 квадриллионов Солнц.

Но даже этот кластер не может конкурировать с тем, что, вероятно, является самым массивным объектом, из когда-либо обнаруженных: галактический протокластер, известный как SPT2349.

“Мы выиграли джекпот обнаружив эту структуру”, – сказал Чепмен, руководитель команды, обнаружившей нового рекордсмена. “Более 14 очень массивных отдельных галактик, находящихся в пространстве ненамного большем, чем занимает наш Млечный Путь”.

То, что такой огромный объект мог образоваться, когда Вселенной было всего 1,4 миллиарда лет, сильно удивило астрономов, поскольку компьютерное модели предполагали, что для формирования таких крупных объектов должно потребоваться намного больше времени.

Учитывая, что люди исследовали только небольшую часть неба, вероятно, ещё более массивные объекты могут скрываться далеко во Вселенной.

NML Лебедя

В созвездии Лебедя расположилась одна из крупнейших звезд Вселенной, и от Земли ее отделяют почти 5000 св. лет.

В то время, как NML Лебедя превышает массу Солнца в пятьдесят раз, ее светимость в 1 млн. раз выше главной звезды нашей системы.

Самые большие звезды во Вселенной

В звездном небе эту звезду можно увидеть в Северном полушарии лишь вооружившись мощным телескопом.

Великан из созвездия Геркулеса

Но как велики они бывают? Можно ли ответить на вопрос, какая планета самая большая? Ученые из Аризоны (Ловелловская лаборатория) полагают, что да.

В 2006 году в созвездии Геркулеса ими была обнаружена планета, чьи размеры превышают габариты Земли в 20 раз. Планете присвоили наименование TrES–4. Этот раскаленный гигант похож на звезду, но все же является планетой. TrES–4 больше Юпитера (самой большой планеты Солнечной системы) в 1,7 раз. По имеющимся в настоящее время данным это – самая большая планета во Вселенной.

VY Большого Пса

Диаметр VY Большого Пса, тем не менее, по некоторым данным, оценивается в 1800-2100 солнечных, то есть это явный рекордсмен среди всех прочих красных гипергигантов. Окажись она в центре Солнечной системы, она поглотила бы все планеты, вместе с Сатурном. Предыдущие кандидаты на звание самых больших звёзд во Вселенной тоже вместились бы в неё полностью.

Самые большие звезды во Вселенной

Свету достаточно всего 14. 5 секунд, чтобы обогнуть наше Солнце полностью. Чтобы обогнуть VY Большого Пса, свету пришлось бы лететь 8.5 часов! Если бы вы решились на такой облет вдоль поверхности на истребителе, со скоростью 4500 км/ч, то такое безостановочное путешествие заняло бы 220 лет.

Эта звезда еще вызывает массу вопросов, так как точный её размер установить сложно из-за размытой короны, которая имеет гораздо меньшую плотность, чем солнечная. Да и сама звезда имеет плотность в тысячи раз меньше, чем плотность воздуха, которым мы дышим.

Кроме того, VY Большого Пса теряет своё вещество и образовала вокруг себя заметную туманность. В этой туманности, возможно, теперь даже больше вещества, чем в самой звезде. К тому же она нестабильная, и в ближайшие 100 тысяч лет взорвется гиперновой. К счастью, до неё 3900 световых лет, и Земле этот страшный взрыв не угрожает.

Эту звезду можно найти на небе в бинокль или в небольшой телескоп – её яркость меняется от 6.5 до 9.6 m.

VX Стрельца

Эта звезда относится к классу гипергигантов — самых мощных и ярких, наиболее тяжелых и при этом самых редких и краткоживущих сверхгигантов. Ее радиус превышает солнечный примерно в 1520 раз.

RW Цефея

VX Стрельца расположена в созвездии Цефея, в 9000 световых лет от нашей планеты.

Она настолько огромна, что может легко покрыть орбитальный путь Сатурна, если окажется на месте Солнца. Красный цвет звезды показывает, что ее температурный диапазон составляет от 3000 до 4000 по шкале Кельвина. Более горячие звезды имеют желтую окраску, а очень горячие приобретают синеватый оттенок.

История открытия

21 июня 2010 года команда астрономов под руководством Пола Кроутера (англ. Paul Crowther), профессора астрофизики из Университета Шеффилда, при исследовании скопления звёзд RMC 136a обнаружила звезду, масса которой значительно превышает массу Солнца. Исследования проводились с использованием массива телескопов VLT Европейской южной обсерватории, а также архивных данных с телескопа «Хаббл».

Учёные обнаружили несколько звёзд с температурой поверхности более 40 000 К, в несколько десятков раз больше и несколько миллионов раз ярче Солнца. Согласно существующим моделям, некоторые из этих звёзд при образовании имели массу более 150 солнечных. Звезда R136a1 оказалась наиболее массивной из известных науке звёзд: её масса составляет 315 масс Солнца, а масса при образовании — более 325.

Подобные сверхтяжёлые звёзды исключительно редки и образуются только в очень плотных звёздных скоплениях. Наблюдение подобных звёзд требует очень высокой разрешающей способности инструментов.

Астрофизики из Института астрономии имени Аргеландера в Бонне (Германия) на основе моделирования процесса формирования звёзд в этой части туманности Тарантула предположили, что R136a1 сформировалась в результате слияния нескольких более мелких звёзд с массой меньше классического предела массы одиночной звезды (150 солнечных масс).

AH Скорпиона

Радиус: 1287 — 1535 ?. Красный супергигант в удивительном созвездии Скорпиона в диаметре равным ≈1412 солнечных. От нас AH Скорпиона удалена на 7400 св. лет.

AH Scorpii окружена пылевой оболочкой, что можно наблюдать на фото с большим разрешением.

Самые большие звезды во Вселенной

Это переменная звезда, блеск которой изменяется в зависимости от происходящих на ней физических процессов. Свое грозное и оригинальное название созвездие получило от большой схожести расположения звезд на обитателя пустыни — Скорпиона.

Вэстерланд 1-26

Радиус: ≈1530. Наибольшей звездой в крупном звездном скоплении созвездия Жертвенник выступает Вэстерланд 1-26. Она была открыта в 1961 году шведским астрономом Вестелундом, и под именем открывателя вошла в справочники.

Радиус звезды намного больше радиуса Солнца, и если предположить, что Вэстерланд был звездой нашей системы, то ее фотосфера поглотила бы орбиту Юпитера.

Самые большие звезды во Вселенной

Удивительно, но эта звезда ярче нашего Солнца в 380 тысяч раз, но из-за большого удаления в 11,5 тыс. световых лет, её не видно невооруженным глазом.

VV Цефея А

Эта звезда расположена в направлении созвездия Цефея, около 5 тысяч световых лет от Земли. Красный гипергигант с радиусом примерно равным 1050-1900 радиусам Солнца является частью двойной звездной системы.

UY Щита и Солнце

Ее компаньон — маленькая голубая звезда VV Цефея B, которая вращается вокруг своего «большого брата» по эллиптической орбите. Название звезды дано в честь самой большой из пары, и теперь она известна как одна из самых больших двойных звезд Млечного Пути.

Неопределённости и оговорки

Представление художника о диске материи вокруг массивной звезды

Наиболее массивные звёзды, перечисленные ниже, являются предметом текущих исследований, их характеристики постоянно пересматриваются.

Массы, указанные в таблице ниже, выводятся из теорий, использующих сложные методики измерений температуры и абсолютной звёздной величины звезды. Все указанные массы имеют значительные неопределённости, так как измерения и/или теоретические модели могут быть неверными. Примером является VV Цефея, которая, в зависимости от методики исследования звезды, может иметь массу как от 25 до 40, так и до 100 солнечных масс.

Массивные звёзды редки, все ниже перечисленные звёзды находятся на расстояниях в многие тысячи световых лет от Земли, и это само по себе делает измерения трудными. Также большинство звёзд с такими экстремальными массами окружено облаками выбрасываемого газа, которые скрывают поверхность звезды — это создает трудности в измерениях температуры и яркости звёзд, а также существенно усложняет процесс определения их внутреннего химического состава. Для некоторых методов различные химические составы приводят к разным оценкам массы звезды.

Кроме того, облака газа создают неясность в вопросе о том, наблюдается ли только одна сверхмассивная звезда, или же компактная кратная система. Во втором случае каждая звезда велика сама по себе, но не обязательно сверхмассивна. Кроме того, возможны системы из нескольких звёзд, где одна сверхмассивная звезда имеет гораздо меньший по массе спутник или систему таковых.

Наиболее надёжно массы определены у NGC 3603-A1 и WR 20a. Последние являются членами двойных систем, и это позволяет точно рассчитать массы звёзд с помощью законов Кеплера посредством определения взаимных орбитальных движений каждого компонента через измерение их лучевых скоростей и кривых блеска, так как обе звезды являются затменными переменными.

Эта Киля

Самой крупной в нашей галактике является двойная звезда в созвездии Киля. Находясь очень далеко от нас (7500 св. лет), она светит в 5 млн. раз ярче нашего Солнца. Впервые звезду, и предположительно, это была Эта Киля, описал голландский мореплаватель Питер Кейзер в конце XVI столетия.

Самые большие звезды во Вселенной

В общем списке самых крупных звёзд во Вселенной, Этак Киля замыкает вторую десятку. Удивительно, но ещё 30 лет назад эту звезду было невозможно рассмотреть невооруженным взглядом, но на рубеже 80-90-ых годов XX столетия её яркость значительно увеличилась.

Радиус: 357 — 1342 Масса: ≈10

Эта мало изученная звезда, находится на расстоянии выше 13 тысяч световых лет от нас в созвездии Орла. Очень трудно классифицировать её, т. к.

плотность звездного вещества очень мала, а сама звезда окутана плотным туманом из материи, увлекаемой от звезды звездным ветром. Масса тумана по расчетам около 30-40 солнечных.

В настоящее время звезду считают желтым сверхгигантом.

Сириус

Радиус: 1.7 Яркая и довольно большая звезда, которая ближе всего к нам — это Сириус, гармонично вписавшаяся в созвездие Большого Пса.

Самая яркая на небе, которое мы наблюдаем, она, только представьте, в 22 раза ярче нашего Солнца. Но это, конечно, не рекорд. Её высокая яркость объясняется близостью к нам.

Самые большие звезды во Вселенной

В космосе много звёзд и побольше и поярче. Еще в Древнем Египте люди обратили внимание на это созвездие и ярчайшую звезду в его сплетении, и почитали собаку, как священное животное.

А вот в Ассирии и Вавилоне, Большого Пса ассоциировали со змеей, так что большой пес вышел из более давних религиозных представлений. Позже выяснилось, что Сириус является двойной звездой. Открытие оказалось триумфом в астрономии 19 века.

Эта двойная звезда удалена от нас на 8,67 световых года и приближается к нам со скоростью 6,7 км/с.

Самые большие звезды Вселенной. Для удобства все радиусы звёзд указаны в солнечных радиусах.

Гипергиганты

Гипергигант VY Большого Пса выбрасывает огромное количество газа во время своей вспышкиЕсли наибольшую звезду невозможно найти практически, может, стоит её разработать теоретически? Т.е., найти некий предел, после которого существование звезды уже не может быть звездой. Однако даже здесь современная наука сталкивается с проблемой. Современная теоретическая модель эволюции и физики звёзд не объясняют многого из того, что существует фактически и наблюдается в телескопы. Примером тому служат гипергиганты.

Самые большие звезды во Вселенной

Астрономам не раз приходилось поднимать планку предела звёздной массы. Такой предел впервые ввёл в 1924 году английский астрофизик Артур Эддингтон. Получив кубическую зависимость светимости звёзд от их массы.

Эддингтон понял, что звезда не может накапливать массу бесконечно. Яркость возрастает быстрее массы, и это рано или поздно приведёт к нарушению гидростатического равновесия. Световое давление нарастающей яркости будет буквально сдувать внешние слои звезды.

Предел, рассчитанный Эддингтоном, составлял 65 солнечных масс. В последствие астрофизики уточняли его расчёты, добавляя в них неучтённые компоненты и применяя мощные компьютеры. Так современный теоретический предел массы звезд составляет 150 солнечных масс.

В представлении художника R136a1 является самой массивной из известных ныне звёзд. Кроме неё значительными массами обладает ещё несколько звёзд, число которых в нашей галактике можно пересчитать по пальцам. Такие звёзды назвали гипергигантами. Заметим, что R136a1 значительно меньше звёзд, которые, казалось бы, должны быть ниже её по классу – к примеру, сверхгиганта UY Щита. Всё потому что гипергигантами называет не самые крупные, а именно самые массивные звёзды. Для таких звёзд создали отдельный класс на диаграмме спектр-светимости (O), расположенных выше класса сверхгигантов (Ia). Точной начальной планки массы гипергиганта не установлено, но, как правило, их масса превышает 100 солнечных. Ни одна из крупнейших звёзд «большой десятки» не дотягивает до этих пределов.

Видео: Самые большие звезды во Вселенной

Источники:

https://o-kosmose.net/zvezdyi-vselennoi/

https://basetop.ru/samaya-bolshaya-zvezda-vo-vselennoy-ndash-uy-shhita/

https://pooha.net/nature/space/4-stars

https://spacegid.com/samaya-bolshaya-zvezda-vo-vselennoy.html

Как умирают самые массивные звёзды: сверхновая, гиперновая или прямой коллапс?

В случае наиболее массивных звёзд мы пока ещё не уверены, закончат ли они свою жизнь взрывом, уничтожив себя целиком, или же тихим коллапсом, полностью сжавшись в гравитационную бездну пустоты.

Создайте достаточно массивную звезду, и она не закончит свои дни тихонечко — так, как это предстоит нашему Солнцу, которое сначала будет плавно гореть миллиарды и миллиарды лет, а затем сожмётся до белого карлика. Вместо этого её ядро схлопнется, и запустит неконтролируемую реакцию синтеза, которая разметает внешние слои звезды во взрыве сверхновой, а внутренние части сожмёт в нейтронную звезду или чёрную дыру. По крайней мере, так принято считать. Но если вы возьмёте достаточно массивную звезду, сверхновой может и не получиться.

Иллюстрация процесса взрыва сверхновой, наблюдаемой с Земли в XVII веке в созвездии Кассиопея. Окружающий её материал и постоянное испускание электромагнитного излучения сыграли свою роль в непрерывной подсветке остатков звезды

Вместо этого есть другая возможность – прямое схлопывание, в котором вся звезда просто исчезает, превращаясь в чёрную дыру. А ещё одна возможность известна, как гиперновая — она гораздо более энергетическая и яркая, чем сверхновая, и не оставляет за собой остатков ядра. Каким же образом закончат свою жизнь самые массивные звёзды? Вот, что говорит об этом наука.

Каждая звезда сразу после рождения синтезирует в своём ядре гелий из водорода. Звёзды, похожие на Солнце, красные карлики, всего в несколько раз превышающие Юпитер, и сверхмассивные звёзды, превышающие нашу по массе в десятки и сотни раз – все они проходят через этот первый этап ядерных реакций. Чем массивнее звезда, тем больших температур достигает её ядро, и тем быстрее она сжигает ядерное топливо.

Когда в ядре звезды заканчивается водород, она сжимается и разогревается, после чего – если достигнет нужной плотности и температуры – может начинать синтез более тяжёлых элементов. Солнцеподобные звёзды смогут разогреться достаточно после того, как закончится водородное топливо, и начнут синтез углерода из гелия, но этот этап для нашего Солнца будет последним. Чтобы перейти на следующий уровень, синтез из углерода, звезда должна превышать Солнце по массе в 8 (или более) раз.

Если звезда будет настолько массивной, то её ждёт настоящий космический фейерверк. В отличие от солнцеподобных звёзд, нежно срывающих свои верхние слои, из которых формируется планетарная туманность, и сжимающихся до белого карлика, богатого углеродом и кислородом, или до красного карлика, который никогда не достигнет этапа сжигания гелия, и просто сожмётся до богатого гелием белого карлика, наиболее массивным звёздам уготован настоящий катаклизм.

Чаще всего, особенно у звёзд с не самой большой массой (≈ 20 солнечных масс и меньше), температура ядра продолжает повышаться, пока процесс синтеза переходит на более тяжёлые элементы: от углерода к кислороду и/или неону, и затем далее, по периодической таблице, к магнию, кремнию, сере, приходя в итоге к железу, кобальту и никелю. Синтез дальнейших элементов потребовал бы больше энергии, чем выделяется при реакции, поэтому ядро схлопывается и появляется сверхновая.

Это очень яркий и красочный конец, настигающий множество массивных звёзд во Вселенной. Из всех появившихся в ней звёзд лишь 1% обретают достаточную массу, чтобы дойти до такого состояния. При повышении массы количество звёзд, достигших её, уменьшается. Порядка 80% всех звёзд во Вселенной – красные карлики. Лишь 40% обладают массой, как у Солнца, или менее. Солнце массивнее 95% звёзд во Вселенной. В ночном небе полно очень ярких звёзд: тех, что легче всего увидеть человеку. Но за порогом нижнего ограничения для появления сверхновой существуют звёзды, превышающие Солнце по массе в десятки и даже сотни раз. Они очень редки, но весьма важны для космоса – всё потому, что массивные звёзды могут закончить своё существование не только в виде сверхновой.

Во-первых, у многих массивных звёзд имеются истекающие потоки и выброшенный наружу материал. Со временем, когда они приближаются либо к концу своей жизни, либо к концу одного из этапов синтеза, что-то заставляет ядро на короткое время сжаться, из-за чего оно разогревается. Когда ядро становится горячее, скорость всех типов ядерных реакций увеличивается, что ведёт к быстрому увеличению количества энергии, создаваемому в ядре звезды.

Это увеличение энергии может сбрасывать большое количество массы, порождая явление, известное, как псевдосверхновая: происходит вспышка ярче любой нормальной звезды, и теряется масса в количестве до десяти солнечных. Звезда Эта Киля (ниже) стала псевдосверхновой в XIX веке, но внутри созданной ею туманности она всё ещё горит, ожидая финальной участи.

Так какова же конечная судьба звёзд, массой более чем в 20 раз превышающих наше Солнце? У них есть три возможности, и мы ещё не полностью уверены в том, какие именно условия приводят к развитию каждой из трёх. Одна из них – сверхновая, которые мы уже обсудили. Любая ультрамассивная звезда, теряющая достаточно много своей массы, может превратиться в сверхновую, если её масса внезапно попадёт в правильные пределы. Но существуют ещё два промежутка масс – и опять-таки, мы точно не знаем, какие именно это массы – позволяющие произойти двум другим событиям. Оба этих события определённо существуют – мы уже их наблюдали.

Чёрные дыры прямого коллапса. Когда звезда превращается в сверхновую, её ядро схлопывается, и может стать либо нейтронной звездой, либо чёрной дырой – в зависимости от массы. Но только в прошлом году, впервые, астрономы наблюдали, как звезда массой в 25 солнечных просто исчезла.

Звёзды не исчезают бесследно, но тому, что могло произойти, существует физическое объяснение: ядро звезды прекратило создавать достаточное давление излучения, уравновешивавшее гравитационное сжатие. Если центральный регион становится достаточно плотным, то есть, если достаточно большая масса оказывается сжатой в достаточно малый объём, формируется горизонт событий и возникает чёрная дыра. А после появления чёрной дыры всё остальное просто втягивается внутрь.

Теоретическую возможность прямого коллапса предсказывали для очень массивных звёзд, более 200-250 солнечных масс. Но недавнее исчезновение звезды такой относительно малой массы поставило теорию под вопрос. Возможно, мы не так хорошо понимаем внутренние процессы звёздных ядер, как считали, и, возможно, у звезды есть несколько способов просто схлопнуться целиком и исчезнуть, не сбрасывая какого-то ощутимого количества массы. В таком случае формирование чёрных дыр через прямой коллапс может быть гораздо более частым явлением, чем считалось, и это может быть весьма удобным для Вселенной способом создания сверхмассивных чёрных дыр на самых ранних стадиях развития. Но существует и другой итог, совершенно противоположный: световое шоу, гораздо более красочное, чем сверхновая.

При определённых условиях звезда может взорваться так, что не оставит ничего после себя!

Взрыв гиперновой. Также известен, как сверхъяркая сверхновая. Такие события бывают гораздо более яркими и дают совсем другие световые кривые (последовательность повышения и понижения яркости), чем любые сверхновые. Ведущее объяснение явления известно, как «парно-нестабильная сверхновая». Когда большая масса – в сотни, тысячи и даже многие миллионы раз больше массы всей нашей планеты – схлопывается в небольшой объём, выделяется огромное количество энергии. Теоретически, если звезда будет достаточно массивной, порядка 100 солнечных масс, выделяемая ею энергия окажется такой большой, что отдельные фотоны могут начать превращаться в электрон-позитронные пары. С электронами всё ясно, а вот позитроны – это их двойники из антиматерии, и у них есть свои особенности.

На диаграмме показан процесс производства пар, который, как считают астрономы, привёл к появлению гиперновой SN 2006gy. При появлении фотонов достаточно высокой энергии появятся и электрон-позитронные пары, из-за чего упадёт давление и начнётся неуправляемая реакция, уничтожающая звезду

При наличии большого количества позитронов они начнут сталкиваться с любыми имеющимися электронами. Эти столкновения приведут к их аннигиляции и появлению двух фотонов гамма-излучения определённой, высокой энергии. Если скорость появления позитронов (и, следовательно, гамма-лучей) достаточно низка, ядро звезды остаётся стабильным.

Но если скорость увеличится достаточно сильно, эти фотоны, с энергией больше 511 кэВ, будут разогревать ядро. То есть, если начать производство электрон-позитронных пар в схлопывающемся ядре, скорость их производства будет расти всё быстрее и быстрее, что будет ещё сильнее разогревать ядро! Бесконечно это продолжаться не может – в результате это приведёт к появлению самой зрелищной сверхновой из всех: парно-нестабильной сверхновой, в которой происходит взрыв целиком всей звезды массой в более, чем 100 солнц!

Это значит, что для сверхмассивной звезды есть четыре варианта развития событий:

  • Сверхновые низкой массы порождают нейтронную звезду и газ.
  • Сверхновые более высокой массы порождают чёрную дыру и газ.
  • Массивные звёзды в результате прямого коллапса порождают массивную чёрную дыру без всяких других остатков.
  • После взрыва гиперновой остаётся один только газ.

Слева – иллюстрация художника внутренностей массивной звезды, сжигающей кремний, и находящейся на последних стадиях, предшествующих сверхновой. Справа – изображение с телескопа Чандра остатков сверхновой Кассиопея A показывает наличие таких элементов, как железо (голубой), сера (зелёный) и магний (красный). Но этот результат не обязательно был неизбежным.

При изучении очень массивной звезды появляется искушение предположить, что она станет сверхновой, после чего останется чёрная дыра или нейтронная звезда. Но на самом деле есть ещё два возможных варианта развитии событий, которые уже наблюдали, и которые происходят довольно часто по космическим меркам. Учёные всё ещё работают над пониманием того, когда и при каких условиях происходит каждое из этих событий, но они на самом деле происходят.

В следующий раз, рассматривая звезду, во много раз превосходящую Солнце по массе и размеру, не думайте, что сверхновая станет неизбежным итогом. В таких объектах остаётся ещё много жизни, и много вариантов их гибели. Мы знаем, что наша наблюдаемая Вселенная началась со взрыва. В случае наиболее массивных звёзд мы пока ещё не уверены, закончат ли они свою жизнь взрывом, уничтожив себя целиком, или же тихим коллапсом, полностью сжавшись в гравитационную бездну пустоты. опубликовано econet.ru Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: