Сообщение на тему планета седна. Седна

Солнечная система > Карликовые планеты > Седна

Художественная интерпретация Седны с возможной крошечной луной

Художественная интерпретация Седны с возможной крошечной луной

Седна – карликовая планета Солнечной системы и транснептуновый объект: описание с фото, обнаружение, имя, орбита, состав, связь с облаком Оорта, исследование.

Открытие далеких карликовых планет привело к тому, что мы лишись Плутона в качестве планеты. Но ученые не унывают, потому что это дает новое поле для исследований. В 2003 году заметили Седну, считающуюся самым отдаленным объектом, проживающим в Облаке Оорта.

Открытие и имя карликовой планеты Седна

Эта находка также принадлежит команде Майкла Брауна, заметившей карликовую планету Седна в 2003 году. Изначально именовали 2003 VB12. Все началось еще в 2001 году, когда обзор в Паломарской обсерватории показал, что на удаленности в 100 а.е. от Солнца располагается объект. Слежка в телескоп Кек в 2003-м продемонстрировала движение по удаленному и эксцентричному орбитальному пути.

Сравнение размеров Седны с крупными ТНО и Землей

Сравнение размеров Седны с крупными ТНО и Землей

Позже выяснилось, что небесное тело попадало в обзор и других исследователей. Свое название Седна получила в честь инуитского божества морей. Когда-то Седна была смертной, но утопилась в Северном Ледовитом океане, где и стала проживать с морскими существами.

Команда объявила официальное имя до момента документации, что нарушало процедуру протокола. Но в МАС возражать не стали.

Где находится

О том, в какой области Солнечной системы находится карликовая планета Седна, ученые спорят до сих пор. Первоначально считалось, что это объект Рассеянного диска – региона, находящегося за поясом Койпера. Компоненты диска были отброшены туда гравитацией Нептуна.

Но дальнейшие исследования удаленного карлика показали, что этот объект никогда не попадал под гравитационное влияние восьмой планеты. Было выдвинуто предположение, что Солнце захватило карлика из другой звездной системы. И в этом случае, ее следует считать объектом облака Оорта.

Размер, масса и орбита карликовой планеты Седна

Физические характеристики карликовой планеты Седна

Открытие
ПервооткрывательМ. Браун, Ч. Трухильо, Д. Рабинович
Дата открытия14 ноября 2003
Орбитальные характеристики
Перигелий76,315235 а. е.
Афелий1006,543776 а. е.
Большая полуось (a
)
541,429506 а. е.
Эксцентриситет орбиты (e
)
0,8590486
Сидерический периодобращенияпримерно 4 404 480 д(12 059,06 a)
Орбитальная скорость (v
)
1,04 км/с
Средняя аномалия (Mo
)
358,190921°
Наклонение (i
)
11,927945°
Долгота восходящего узла (Ω)144,377238°
Аргумент перицентра (ω)310,920993°
Физические характеристики
Размеры995 ± 80 км
Масса (m
)
8,3·1020—7,0·1021 кг (0,05—0,42 от массы Эриды)
Средняя плотность (ρ)2,0? г/см³
Ускорение свободного паденияна экваторе (g
)
0,33—0,50 м/с²
Вторая космическая скорость (v
2)
0,62—0,95 км/с
Период вращения (T
)
0,42 д (10 ч)
Альбедо0,32 ± 0,06
Спектральный класс(красный) B−V = 1,24; V−R = 0,78
Видимая звёздная величина21,1 20,4 (в перигелии)
Абсолютная звёздная величина1,56

В 2004 году верхний предел для диаметра составлял 1800 км, а в 2007-м – 1600 км. Обзор в телескоп Гершеля в 2012 году установил границы в 915-1075 км. У Седны нет найденных спутников, поэтому рассчитать ее массу не получится. Но занимает 5-е место среди ТНО и карликовых планет. Обходит звезду по высокоэллиптическому орбитальному маршруту и отдаляется на 76 а.е. и 936 а.е.

Орбита Седны по сравнению с другими телами системы, поясом Койпера и Облаком Оорта

Орбита Седны по сравнению с другими телами системы, поясом Койпера и Облаком Оорта

Полагают, что на один орбитальный проход уходит 10000-12000 лет.

Основные характеристики

Из-за своего удаления от центральной звезды небесное тело трудно поддается изучению. Для выяснения ее основных параметров астрономы использовали мощные инфракрасные телескопы Спитцер и Гершель.

поверхность карлика глазами художника

Средний диаметр карликовой планеты Седны составляет 996 км, что ставит ее на пятое место среди крупнейших транснептуновых объектов. Точную ее массу установить пока не удалось. По разным подсчетам она составляет от 8,3*1020 до 7,1*1021 кг.

Состав карликовой планеты Седна

На момент открытия Седна казалась ярким объектом. По окрасу карликовая планета практически красная как Марс, к чему могло привести наличие толинов или углеводородов. Поверхность однородна по цвету и спектру.

Кора не усеяна кратерными формированиями, поэтому нет большого количества ярких ледяных следов. Температура опускается к -240.2°С. Модели показывают верхний предел в 60% для метанового льда и 70% для водяного. Но модель М. Баруччи указывает на состав: титоны (24%), аморфный углерод (7%), азот (10%), метанол (26%) и метан (33%).

Художественная интерпретация поверхности Седны

Художественная интерпретация поверхности Седны

Азот намекает на то, что в прошлом карлик мог располагать атмосферой. При подходе к Солнцу температура поднимается к -237.6°С, чего достаточно для сублимации азотного льда. Это может также привести к наличию океана.

Орбита и вращение[ | ]

Орбита Седны (красная) в сравнении с орбитами Юпитера (оранжевая), Сатурна (жёлтая), Урана (зелёная), Нептуна (синяя) и Плутона (сиреневая)
Наклон орбиты составляет 11,932°. У Седны самый длинный орбитальный период среди известных крупных объектов в Солнечной системе, который составляет примерно 11 487 лет[23] (назывались также оценки в 10 836 лет и в 11 664 года). Большая полуось орбиты Седны составляет a

= 509,1 а. е., а сама орбита очень вытянутая, с эксцентриситетом, равным
e
= 0,8506. Перигелий орбиты один из самых отдалённых среди объектов Солнечной системы[24], и составляет 76,1 а. е. (больше только у 2012 VP113 — 80,51 а. е.), Седна пройдёт его в 2076 году, а афелий составляет 942 а. е[23]. При открытии Седны расстояние до неё составляло 89,6 а. е. от Солнца[25], т. е. она в два раза дальше, чем Плутон. Эрида была обнаружена позже тем же самым образом на удалении в 97 а. е. Хотя орбиты некоторых долгопериодических комет простираются дальше, чем Седна, они слишком тусклы для того, чтобы быть обнаруженными, кроме случаев приближения перигелия внутри Солнечной системы. При приближении Седны к своему перигелию в середине 2076 года[8], Солнце в её небе будет выглядеть просто как очень яркая звезда, только в 100 раз более яркая, чем наблюдаемая нами полная луна на Земле, и слишком удаленная, чтобы можно было различить её диск невооружённым глазом[26].

При обнаружении Седны первоначально предполагали, что у неё необычно долгий период вращения (от 20 до 50 дней)[26], и что вращение Седны может быть замедлено гравитационным притяжением большого спутника, похожего на спутник Плутона Харон[27]. Проведенный космическим телескопом Хаббл поиск такого спутника в марте 2004 ничего не обнаружил[28], а последующие измерения телескопом MMT позволили учёным составить картину о более коротком периоде вращения (около 10 часов), который является гораздо более типичным для данного объекта[29].

Происхождение карликовой планеты Седна

Команда полагала, что небесное тело принадлежит к Облаку Оорта, где проживают кометы. Это основывалось на удаленности Седны. Ее записали как внутреннее тело Облака Оорта. В таком сценарии Солнце сформировалось на территории открытого скопления с другими звездами. Со временем они разошлись, а Седна перешла на современную орбиту. Эту идею подтверждают компьютерные симуляции.

Если бы Седна появилась на своей теперешней позиции, то это намекало бы на дальнейшее расширение протопланетного диска. Тогда ее орбита была бы более круговой. Потому пришлось бы притянуть ее мощной гравитацией от другого объекта.

Или же орбита могла сформироваться от контакта с крупным двоичным соседом, отдаленным на 1000 а.е. от Солнца. Среди вариантов даже рассматривали Немезиду. Но прямых доказательств нет.

Еще одна теория говорит, что Седна вообще появилась за пределами системы и притянулась нашей звездой. Когда земная техника продвинется в развитии, мы сможем получить больше данных об Облаке Оорта и тогда расширим свое понимание формирования системы.

Ссылки

Планеты Солнечной системы
Карликовые планетыПлутон · Церера · Хаумеа · Макемаке · Эрида
Планеты Земной группы Меркурий · Венера · Земля · Марс
Газовые гигантыЮпитер · Сатурн · Уран · Нептун
Солнечная система

Обнаружены новые косвенные признаки девятой планеты Солнечной системы

Про Планету Х

Периферия Солнечной системы населена объектами, которые иногда коллективно называются поясом Койпера, но на самом деле представляют собой несколько динамически различных групп — классический пояс Койпера, рассеянный диск и резонансные объекты. Объекты классического пояса Койпера вращаются вокруг Солнца по орбитам с небольшими наклонениями и эксцентриситетами, то есть по орбитам «планетного» типа. Объекты рассеянного диска движутся по вытянутым орбитам с перигелиями в области орбиты Нептуна, орбиты резонансных объектов (к их числу относится Плутон) находятся в орбитальном резонансе с Нептуном.

Классический пояс Койпера довольно резко обрывается примерно на пятидесяти а.е. Вероятно, именно там проходила основная граница распределения вещества Солнечной системы. И хотя объекты рассеянного диска и резонансные объекты в афелии уходят от Солнца на сотни астрономических единиц, в перигелии они близки к Нептуну, указывая, что и те, и другие связаны общим происхождением с классическим поясом Койпера, а на свои современные орбиты были «пристроены» гравитационным воздействием Нептуна.

Картина начала усложняться в 2003 году, когда был открыт транснептуновый объект (ТНО) Седна с перигелийным расстоянием в 76 а.е. Столь значительное удаление от Солнца означает, что Седна не могла попасть на свою орбиту в результате взаимодействия с Нептуном, и потому возникло предположение, что она является представителем более далёкого населения Солнечной системы — гипотетического облака Оорта.

Некоторое время Седна оставалась единственным известным объектом с подобной орбитой. Об открытии второго «седноида» в 2014 году сообщили Чедвик Трухильо и Скотт Шеппард. Объект 2012 VP113 обращается вокруг Солнца по орбите с перигелийным расстоянием 80.5 а.е., то есть даже больше, чем у Седны. Трухильо и Шеппард обратили внимание, что и Седна, и 2012 VP113 имеют близкие значения аргумента перигелия — угла между направлениями на перигелий и на восходящий узел орбиты (точку её пересечения с эклиптикой). Интересно, что подобные значения аргумента перигелия (340° ± 55°) характерны для всех объектов с большими полуосями больше 150 а.е. и с перигелийными расстояниями больше перигелийного расстояния Нептуна. Трухильо и Шеппард высказали предположение, что такое группирование объектов вблизи конкретного значения аргумента перигелия может быть вызвано возмущающим действием далёкой массивной (несколько масс Земли) планеты.

В новой статье Батыгина и Брауна исследуется возможность того, что существование такой планеты действительно может объяснить наблюдаемые параметры далёких астероидов со схожими значениями аргумента перигелия. Авторы аналитически и численно исследовали движение тестовых частиц на периферии Солнечной системы на протяжении 4 млрд. лет под воздействием возмущающего тела массой 10 масс Земли на вытянутой орбите и показали, что наличие такого тела действительно приводит к наблюдаемой конфигурации орбит ТНО со значительными большими полуосями и перигелийными расстояниями. Более того, наличие внешней планеты позволяет объяснить не только существование Седны и других ТНО с близкими значениями аргумента перигелия. Неожиданно для авторов в их моделировании действие возмущающего тела объяснило существование ещё одного населения ТНО, происхождение которого до сих пор оставалось непрояснённым, а именно населения объектов пояса Койпера на орбитах с большими наклонениями. Наконец, в работе Батыгина и Брауна предсказывается существование объектов с большими перигелийными расстояниями и другими значениями аргумента перигелия, что обеспечивает возможность дополнительной наблюдательной проверки их предсказания.

Но, конечно, главной проверкой должно стать обнаружение самого «возмутителя спокойствия» — той самой планеты, притяжение которой, по мнению авторов, определяет распределение тел с перигелиями вне классического пояса Койпера. Задача её поиска весьма сложна. Большую часть времени «Планета Х» должна проводить вблизи афелия, который может располагаться на расстоянии свыше 1000 а.е. от Солнца. Расчёты указывают на возможное расположение планеты очень приблизительно — её афелий расположен примерно в направлении, противоположном направлению на афелии исследованных ТНО, но наклонение орбиты по данным об имеющихся ТНО с большими большими полуосями орбит определить не удаётся. Так что обзор весьма обширного участка неба, где может находиться неизвестная планета, продлится много лет. Поиски могут стать легче, если будут обнаружены другие ТНО, движущиеся под воздействием «Планеты Х», что позволит сузить диапазон возможных значений параметров её орбиты.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: