Радиация не повысила риск рака и болезней сердца у астронавтов и космонавтов


50 лет назад один человек совершил маленький шажок, который оказался большим шагом для всего человечества. Мы говорим, как вы поняли, о знаменитой высадке американских астронавтов на Луну. И в последнее время споры вокруг той миссии (как и самой программы «Аполлон») разгорелись с новой силой. Причем речь идет не о том, что «высадки не было и все было снято в павильоне». Новые аргументы говорят нам, что во время миссии на Луну астронавты должны были получить огромную дозу космической радиации, которую невозможно пережить. Но так ли это?

Что такое космическая радиация

Никто не собирается оспаривать факт того, что космическая радиация действительно существует и то, что воздействие ее на живые организмы очень сложно назвать положительным. Сам термин «космическая радиация» довольно обширен и используется для описания энергии, которая излучается в виде электромагнитных волн и/или других частиц, испускаемых небесными телами. При этом не все они являются опасными для человека. Например, люди могут воспринимать некоторые формы электромагнитного излучения: видимый свет можно (простите за тавтологию) увидеть, а инфракрасное излучение (тепло) можно почувствовать.

Это интересно: 5 самых популярных мифов о первой высадке человека на Луну.

Между тем, другие разновидности излучения, такие как радиоволны, рентгеновские и гамма-лучи требуют специального оборудования для наблюдения. Самым опасным является ионизирующее излучение и именно его воздействие в большинстве случаев и называют той самой космической радиацией.

Curiosity рассказал о радиации в космосе

Curiosity имеет на борту прибор RAD для определения интенсивности радиоактивного облучения. В ходе своего полета к Марсу Curiosity производил замеры радиационного фона, а сегодня об этих результатах рассказали ученые, которые работают с NASA. Поскольку марсоход летел в капсуле, а датчик радиации располагался внутри, то эти замеры практически соответствуют тому радиационному фону, который будет присутствовать в пилотируемом космическом корабле.

То есть шестимесячный полет к Марсу примерно равносилен 1 году проведенному на околоземной орбите или двум на атомной электростанции. Учитывая, что общая длительность экспедиции должна составить около 500 суток, перспектива открывается не оптимистичная. Для человека накопленная радиация в 1 Зиверт повышает риск раковых заболеваний на 5%. NASA позволяет своим астронавтам за свою карьеру, набирать не более 3% риска или 0,6 Зиверта. С учетом того, что на МКС ежедневная доза составляет до 1 мЗв, то предельный срок пребывания астронавтов на орбите ограничивается примерно 600 сутками за всю карьеру. На самом Марсе радиация должна быть примерно в два раза ниже чем в космосе, из-за атмосферы и пылевой взвеси в ней т.е. соответствовать уровню МКС, но точных показателей еще не публиковали. Интересны будут показатели RAD в дни пылевых бурь — узнаем насколько марсианская пыль является хорошим радиационным экраном.

Сейчас рекорд пребывания на околоземной орбите принадлежит 55-летнему Сергею Крикалеву — на его счету 803 суток. Но он набрал их с перерывами — всего он совершил 6 полетов с 1988 по 2005 год.

Прибор RAD состоит из трех кремниевых твердотельных пластин, выступающих в качестве детектора. Дополнительно он имеет кристалл йодида цезия, который используется в качестве сцинтилятора. RAD установлен так, чтобы во время посадки смотреть в зенит и захватывать поле в 65 градусов.

Фактически это радиационный телескоп, который фиксирует ионизирующие излучения и заряженные частицы в широком диапазоне.

Радиация в космосе возникает в основном из двух источников: от Солнца — во время вспышек и коронарных выбросов, и от космических лучей, которые возникают во время взрывов сверхновых или других высокоэнергетических событий в нашей и других галактиках.

Космические лучи составляют основную долю радиации в межпланетном путешествии. На них приходится доля излучения в 1,8 мЗв в сутки. Лишь три процента облучения накоплено Curiosity от Солнца. Это связано еще и с тем, что полет проходил в сравнительно спокойное время. Вспышки повышают суммарную дозу, и она приближается к 2 мЗв в сутки.

Пики приходятся на солнечные вспышки.
Нынешние технические средства более эффективны против солнечной радиации, которая имеет невысокую энергию. Например, можно оборудовать защитную капсулу, где космонавты смогут скрываться во время солнечных вспышек. Однако, от межзвездных космических лучей не защитят даже 30 см алюминиевые стены. Свинцовые, вероятно, помогли бы лучше, но это значительно повысит массу корабля, а значит затраты на его выведение и разгон.

Наиболее эффективным средством минимизации облучения должны стать новые типы двигателей, которые существенно сократят время полета до Марса и обратно. NASA сейчас работает над солнечным электрореактивным двигателем и ядерным тепловым. Первый может в теории разогнаться до 20 раз быстрее современных химических двигателей, но разгон будет очень долгим из-за малой тяги. Аппарат с таким двигателем предполагается направить для буксировки астероида, который NASA хочет захватить и перевести на окололунную орбиту для последующего посещения астронавтами.

Наиболее перспективные и обнадеживающие разработки по электрореактивным двигателям ведутся по проекту VASIMR. Но для путешествия к Марсу солнечных панелей будет недостаточно — понадобится реактор.

Ядерный тепловой двигатель развивает удельный импульс примерно втрое выше современных типов ракет. Суть его проста: реактор нагревает рабочий газ (предполагается водород) до высоких температур без использования окислителя, который требуется химическим ракетам. При этом предел температуры нагрева определяется только материалом из которого изготовлен сам двигатель.

Но такая простота вызывает и сложности — тягой очень сложно управлять. NASA пытается решить эту проблему, но не считает разработку ЯРД приоритетной работой.

Применение ядерного реактора еще перспективно тем, что часть энергии можно было бы пустить на генерацию электромагнитного поля, которое бы дополнительно защищало пилотов и от космической радиации, и от излучения собственного реактора. Эта же технология сделала бы рентабельной добычу воды на Луне или астероидах, то есть дополнительно стимулировала коммерческое применение космоса. Хотя сейчас это не более чем теоретические рассуждения, не исключено, что именно такая схема станет ключом к новому уровню освоения Солнечной системы.

Откуда берется космическая радиация

В космосе существует несколько источников ионизирующего излучения. Солнце непрерывно испускает электромагнитное излучение на всех длинах волн. Иногда огромные взрывы на солнечной поверхности, известные как вспышки на Солнце, высвобождают в космос огромное количество рентгеновских и гамма-лучей. Эти явления как раз и могут представлять опасность для астронавтов и оборудования космических аппаратов. Также опасная радиация может исходить из-за пределов нашей Солнечной системы, но на Земле мы защищены от большей части этого ионизирующего излучения. Сильное магнитное поле Земли формирует магнитосферу (грубо говоря, защитный пузырь), который действует как своего рода «щит», блокирующий большую часть опасного излучения.

При этом космическая радиация «не улетает» обратно в космос. Она накапливается вокруг нашей планеты, формируя, так называемые, Пояса Ван Аллена (или радиационные пояса).

Галактическое излучение

Удивительная область звездообразования NGC 3603

Галактические лучи включают тяжелые высокоэнергетические элементы. Они путешествуют на такой быстрой скорости, что лишились электронов. Они могут привести к ионизации атомов при прохождении сквозь вещество. Опасность состоит в том, что они способны пройти сквозь космический корабль или кожу астронавта.

Это доминирующий источник лучей, с которым приходится считаться членам МКС, а также тем, кто отправится за пределы Солнечной системы. Эти частицы сталкиваются с солнечным магнитным полем, поэтому их интенсивность минимальна в период минимума солнечных пятен.

Как NASA решило проблему организации полета на Луну

Короткий ответ — никак. Дело в том, что для того, чтобы добраться до Луны, космический аппарат должен двигаться максимально быстро и по кратчайшему расстоянию. Для «облета и маневрирования» не хватило бы ни времени, ни запаса горючего. Таким образом, участники программы должны были пересечь как внешний, так и внутренний радиационный пояса.

NASA знало о проблеме и поэтому им нужно было что-то делать с обшивкой корабля для астронавтов. Обшивка должна была быть тонкой и легкой для обеспечения защиты. Нельзя было слишком «утяжелять» ее. Поэтому минимальная защита от облучения при помощи металлических пластин была добавлена в конструкцию. Более того, теоретические модели радиационных поясов, разработанные в преддверии полетов «Аполлона», показали, что прохождение через них не будет представлять существенной угрозы для здоровья космонавтов.

Но это еще не все. Чтобы добраться до Луны и благополучно вернуться домой, астронавты «Аполлона» должны были не только пересечь пояса Ван Аллена, но и огромное расстояние между Землей и Луной. По времени полет занимал около трех дней в каждую сторону. Участники миссии также должны были безопасно работать на орбите вокруг Луны и на лунной поверхности. Во время миссий «Аполлон» космический аппарат большую часть времени находился за пределами защитной магнитосферы Земли. Таким образом, экипажи «Аполлонов» были уязвимы для солнечных вспышек и для потока радиационных лучей из-за пределов нашей Солнечной системы.

Происхождение космических лучей

Из-за высокой изотропии космических лучей наблюдения у Земли не позволяют установить, где они образуются и как распределены во Вселенной. На эти вопросы впервые ответила радиоастрономия в связи с открытием космического синхротронного излучения в диапазоне частот 107–109 Гц. Это излучение создаётся электронами очень высокой энергии (109–1010 эВ) при их движении в магнитных полях Галактики. Такие электроны, являющиеся одной из компонент космических лучей, занимают протяжённую область, охватывающую всю Галактику и называемую галактическим гало. В межзвёздных магнитных полях электроны движутся подобно другим заряженным частицам высокой энергии – протонам и более тяжёлым ядрам. Разница состоит лишь в том, что благодаря малой массе электроны, в отличие от более тяжёлых частиц, интенсивно излучают радиоволны и тем самым обнаруживают себя в удалённых частях Галактики, являясь индикатором космических лучей.

Кроме общего галактического синхротронного радиоизлучения, были обнаружены его дискретные источники: оболочки сверхновых звёзд, ядро Галактики, радиогалактики, квазары, активные ядра других галактик и т. д. Естественно считать, что все эти объекты могут быть источниками космических лучей. Ныне основным источником космических лучей внутри Галактики считаются взрывы сверхновых звёзд. Космические лучи ускоряются на ударных волнах, образующихся при этих взрывах. Максимальная энергия, которую могут приобрести частицы в таких процессах, составляет ~ 1016 эВ. Кроме того, часть космических лучей может ускориться до таких же энергий на ударных волнах, распространяющихся в межзвёздной среде Галактики. Космические лучи ещё бóльших энергий образуются в метагалактике. Одним из их источников могут быть активные ядра галактик.

В 1966 Г. Т. Зацепин и В. А. Кузьмин (СССР) и К. Грейзен (США) высказали предположение, что спектр космических лучей при энергиях выше 3·1019 эВ должен «обрезаться» (резко загибаться) из-за взаимодействия высокоэнергичных частиц с реликтовым излучением (т. н. GZK-эффект). Регистрация нескольких событий с энергией E≈1020 эВ может быть объяснена, если предположить, что источники этих частиц удалены от нас на расстояния не более 50 Мпк. В этом случае взаимодействий космических лучей с фотонами реликтового излучения практически не происходит из-за малого количества фотонов на пути частицы от источника к наблюдателю. Первые (предварительные) данные, полученные в 2007 в рамках большого международного «Проекта Оже», по-видимому, впервые указывают на существование GZK-эффекта при E > 3·1019 эВ. В свою очередь, это является аргументом в пользу метагалактического происхождения космических лучей с энергией более 1020 эВ, что значительно выше обрезания спектра за счёт GZK-эффекта. Для разрешения парадокса GZK высказываются различные идеи. Одна из гипотез связана с возможным нарушением лоренцевской инвариантности при сверхвысоких энергиях, в рамках которой нейтральные и заряженные π-мезоны могут быть стабильными частицами при энергиях выше 1019 эВ и входить в состав первичных космических лучей.

Рис. 4. Общая картина корпускулярной населённости межпланетного пространства на орбите Земли на примере кислорода. Спектр галактических космических лучей имеет максимум вблизи энергии ≈400 МэВ/н…

В нач. 1970-х гг. изучение галактических космических лучей малых энергий, проводимое на космических аппаратах, привело к открытию аномальной компоненты космических лучей. Её составляют не полностью ионизованные атомы He, C, N, O, Ne и Ar. Аномальность проявляется в том, что в области энергий от нескольких единиц до нескольких десятков МэВ/нуклон спектр частиц существенно отличается от спектра галактических космических лучей (рис. 4). Наблюдается возрастание потока частиц, связанное, как полагают, с ускорением ионов на ударной волне на границе гелиомагнитосферы и последующей диффузией этих частиц во внутренние районы гелиосферы. Кроме того, распространённость элементов аномальных космических лучей значительно отличается от соответствующих величин для галактических космических лучей.

Рис. 5. Вариации потока ионов с энергией ≥70 МэВ на границе гелиосферы по измерениям на космических зондах «Вояджер-1» и «Вояджер-2» (P. Kiraly, 2009).

С другой стороны, по данным на июнь 2008, полученным с борта КА «Вояджер-1», было отмечено увеличение потока космических лучей сравнительно невысоких энергий (единицы – десятки МэВ, рис. 5). Эти первые сведения о космических лучах, полученные непосредственно из межзвёздной среды, поднимают новые вопросы об источниках и природе (механизмах генерации) аномальной компоненты космических лучей.

Почему астронавты остались живы?

Можно сказать, что NASA повезло, ведь время миссии совпало с, так называемым, «солнечным циклом». Это период роста и спада активности, который происходит примерно каждые 11 лет. На момент запуска аппаратов как раз пришелся период спада. Однако если бы космическое агентство затянуло программу, то все могло бы закончится иначе. Например, в августе 1972 года, между возвращением на Землю «Аполлона-16» и запуском «Аполлона-17» начался период роста солнечной активности. И если бы в это время астронавты находились бы на пути к Луне, они получили бы огромную дозу космического излучения. Но этого, к счастью, не произошло.

Обсудить эту и другие новости вы можете в нашем чате в Телеграм.

В космосе ионизирующая радиация создается несколькими источ­никами: галактическим космическим излучением, излучением солнеч­ных вспышек и излучением радиационного пояса Земли.

Галактическое космическое излучение состоит из протонов, т.е. ядер атомов водорода (85 %), α-частиц — ядер атомов гелия (13 %) и тяжелых ядер (2 %). К тяжелым относят ядра элементов с атомным номером от 3 до 26 (группа железа). Это излучение содержит и «сверхтяжелую» компоненту, состоящую из частиц с очень большими атомными номерами, вплоть до урана.

Вблизи Земли доза галактического космического излучения значительно ниже вследствие защитного эффекта геомагнитного поля и экранирующего действия Земли. Для орбит высотой до 250 — 300 км, при наклоне 65° к плоскости экватора, мощность поглощенной дозы галактического излучения 8.105 – 10.105 Гр в день.

Излучение солнечных вспышек состоит главным образом из протонов с различной энергией и небольшой доли α-частиц. Хотя очень большие солнечные вспышки случаются редко (примерно раз в 4 года), их доза излучения может быть весьма значительной.

Радиационные пояса Землипредставлены внутренним и внешним поясом. Внутренний радиационный пояс состоит из высокоэнергетичных протонов, внешний радиационный пояс Земли состоит из потоков электронов и протонов. С точки зрения радиационной проницаемости, наибольшую опасность представляют ускоренные ядра,которые имеются и в составе галактического космического излучения и в излучении солнечных вспышек.

Каждую секунду на площадку в 1 м2 через границу земной атмосферы из космоса в направлении земной поверхности влетают более 10 тысяч заряженных частиц (протонов и электронов), движущихся с огромными скоростями: протоны – 300-1500 км/с, электроны — около скорости света. Эта корпускулярная радиация практически нацело улавливается магнитосферой Земли. Планета защищена от интенсивной космической радиации магнитным полем. Если бы его не было, космическая радиация смогла бы за короткий срок разложить на ионы и электроны весь воздух атмосферы и жизнь на Земле стала бы невозможна.

Биологическое действие легких ядер высоких энергий практически не отличается от воздействия других известных видов излучения, т.е. рентгеновских и ү-лучей. Однако тяжелые частицы и легкие ядра на излете вызывают, по-видимому, более глубокие и, возможно, необратимые изменения. Существует теория о периодических (30-32 млн лет) вспышках уровней радиации на поверхности Земли в течение последних 500 млн лет. Последний всплеск произошел 10 млн лет тому назад.

Среди серьезных опасностей, которые угрожают человеку и всему живому на Земле, следует выделить те, которые связаны со встречами (столкновениями) планеты с космическими телами: астероидами, ко­метами и метеоритами.

Астероиды — это малые планеты, обращающиеся вокруг Солнца, в основном между орбитами Марса и Юпитера. Их диаметр колеблется в пределах 1-1000 км.

Комета — относительно небольшое, по сравнению, например, с астероидом небесное тело. Большинство комет движется вокруг Солнца по удлиненным эллипсам: при приближении к светилу под действием его тепла они выделяют газы, которые образуют светящуюся оболочку вокруг ядра — голову кометы, и развивают хвост, направленный в противоположную от солнца сторону. При удалении кометы от Солнца хвост постепенно рассеивается в космическом пространстве.

Метеорит — малое твердое тело, влетевшее со скоростью в десятки км/с в земную атмосферу и не успевшее целиком испариться (в случае ледяной глыбы) или распылиться в атмосфере Земли.

Болид — очень яркий метеор с длинным светящимся хвостом; полет болида иногда сопровождается сильным звуком и заканчивается выпадением на земную поверхность метеорита.

В настоящее время известно и описано около 300 космических тел, которые могут пересекать орбиту Земли, а всего, по мнению астрономов, в Космосе находится примерно 300 тыс. астероидов и комет.

В прошлые геологические эпохи имели место столкновения Земли с довольно крупными космическими телами. Доказательством таких столкновений являются остатки кратеров, а также высокое содержание различных элементов (осмия, иридия и др.) в соответствующих по времени слоях литосферы.

Подобное столкновение представляет огромную угрозу для всей биосферы. Наиболее крупным небесным телом, с которым столкнулась Земля в недалеком прошлом, является Тунгусский метеорит (1908 г.). Энергия взрыва, эквивалентная взрыву очень крупной термоядерной бомбы, вызвала массовый лесоповал на площади многих тысяч км2 в Сибири.

Хотя вероятность столкновения Земли с относительно крупными небесными телами невелика, многие страны проводят исследования по проблеме астероидной опасности, направленные на прогнозирование и предотвращение таких столкновений. Однако очевидно, что борьба с такой опасностью может быть успешной только при объединении усилий всего человечества.

В основе проекта разработки системы планетарной защиты от астероидов, комет и метеоритов, траектории движения которых могут пересекаться с орбитой Земли, лежат два принципа: 1) изменение траектории опасного космического объекта; 2) заблаговременное разрушение его на несколько частей, что может либо полностью исключить столкновение, либо уменьшить последствия, если таковое произойдет.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: