Займут ли ионные двигатели главенствующее положение в открытом космосе?

За прошедшие полвека земная космонавтика уверенно освоила околоземное пространство и начала изучение планет Солнечной системы, опираясь на традиционные двигатели на химическом топливе. Конечно, еще многие годы космонавтика будет полагаться на старую добрую «химию». Но химические двигатели имеют серьезное ограничение, связанное с энергетикой химических реакций. Они чрезвычайно «прожорливы», то есть имеют низкий удельный импульс (отношение импульса к массовому расходу топлива). Поэтому космические аппараты, которые ученые посылают к окраинам Солнечной системы, несут совсем небольшую полезную нагрузку, даже с учетом гравитационных маневров в поле тяготения планет, используемом для дополнительного разгона.

Вполне возможно, что на смену «химии» придут электрореактивные двигатели (ЭРД). Именно на ЭРД в последнее время возлагают большие надежды конструкторы космической техники. «ПМ» уже писала об истории российских плазменных двигателей СПД (№12’2005), которые используются в качестве маневровых и корректировочных в некоторых спутниках связи. ЭРД этого же типа стоял на европейском зонде SMART-1, отправленном к Луне в 2003 году, американские же зонды Deep Space1 (стартовал в 1998 году к комете Борелли) и Dawn (запущен в 2007 году для исследования астероидов Весты и Цереры) тоже оснащены ЭРД, правда, другого типа — ионными.

«Это лишь первые шаги, — говорит Олег Батищев, возглавлявший в Лаборатории космических двигателей (Space Propulsion Laboratory) факультета аэронавтики и астронавтики Массачусетского технологического института (MIT) группу по разработке плазменного ЭРД принципиально нового типа. — Но, конечно, будущее именно за плазменными двигателями».

От термояда к плазменному мотору

В начале 1990-х Олег Батищев, молодой кандидат физико-математических наук, выпускник и доцент МФТИ, работал в Институте прикладной математики им. М.В. Келдыша РАН, где занимался численным моделированием систем кинетических уравнений для электронов, ионов и нейтральных атомов. Эти исследования были нужны Курчатовскому институту для проекта международного термоядерного экспериментального реактора ИТЭР (ITER). «В работе над ИТЭРом принимало участие множество исследовательских групп из различных стран мира, русские работали в Германии, Англии, Японии, даже Мексике и Бразилии, — вспоминает Олег.- Среди американских участников была группа, которая занималась проблемой дивертора — пластины, отводящей энергию из реактора. Министерство энергетики США пригласило меня поработать над этой темой в Центре ядерного синтеза (MIT Plasma Science and Fusion Center) — до 1999 года, когда США вышли из проекта. Незадолго до этого я познакомился с Франклином Чанг-Диасом, физиком и астронавтом родом из Коста-Рики, выпускником MIT. Он в конце 1980-х в том же Центре ядерного синтеза занимался конструированием пробкотронов — магнитных ловушек для плазмы, не оправдавших ожиданий (плазма из них вытекала). Тогда ему и пришла в голову идея, как можно разгонять плазму и выталкивать ее в нужном направлении — то есть как сделать плазменный двигатель. Ему нужен был источник плотной плазмы, и мы его исследовали».

Технологии

Какое будущее ждет МКС после исторического запуска SpaceX

Будущие проекты с использованием ионных двигателей

Электродвигатели космических аппаратов готовы снизить стоимость развертывания спутников. С помощью компактных ионных двигателей на борту спутников, они могут поднять себя с низкой околоземной орбиты к их окончательной геостационарной орбите. Это позволит сэкономить огромное количество, необходимое для подъема спутника с помощью обычных химических ракет, топлива, и позволяют использовать гораздо меньшие ракеты-носители, которые будут значительно экономить деньги. Первые блоки с полностью электрической версией платформы спутника в 2012 году с ионным двигателем были оснащены ксеноновым питанием с сеткой.

В более долгосрочной перспективе, космические буксиры и даже пилотируемые полеты на Марс, будут основаны, наиболее вероятно, на ядерных электрических силовых установках.

Источник — phys.org/news

Статья полезна? Тогда сообщите о ней другим, нажав на кнопки социальных сетей (Twitter, Facebook и др.) ниже. Скорее всего, вам будут интересны и полезны следующие записи: Подробности опасных запусков и аварий космических спутников и станций, а также пригодится подписка на новые интересные материалы сайта через оранжевую кнопку вверху или в боковой колонке страницы.

Магнитоплазменная ракета

Идея двигателя VASIMR весьма оригинальна. Он состоит из трех ступеней. Первая — геликонный источник плазмы, в котором газ ионизируется радиочастотным излучением специальной антенны в присутствии магнитного поля (это довольно распространенная конструкция). Во второй ступени происходит ускорение ионов резонансным высокочастотным полем: ионы вращаются в плоскости поперечного сечения, как в циклотроне (иногда это называют «циклотронным разогревом»). Последняя ступень — магнитное сопло, которое преобразует движение поперечно вращающихся частиц в продольное, выбрасывая разогнанную плазму с образованием тяги.

«Целью проекта VASIMR было создание мощного двигателя с большой тягой, порядка ньютонов, — объясняет Олег.- К тому же у этой конструкции есть важное достоинство, которого нет у существующих плазменных двигателей других типов: можно менять удельный импульс в широком диапазоне, ведь для максимальной эффективности ракеты скорость истечения рабочего тела должна быть в идеале равна ее скорости, тогда энергия расходуется оптимальным образом».

Принцип работы

Атомы топлива впрыскиваются в камеру нагнетания и ионизируются за счет бомбардировки электронами, создавая плазму. Существует несколько способов производства быстрых электронов для разряда: электроны могут испускаться из электронной пушки и ускоряться за счет разницы потенциалов с анодом (ионный двигатель Кауфмана); электронам передается ускорения от осциллирующего электрического поля, индуцированного электромагнитом переменного тока, что приводит к самостоятельному разряду и отключению катодов (радиочастотный ионный двигатель) и посредством нагрева токами сверхвысокой частоты. Положительно заряженные ионы рассеиваются в вытяжной системе камеры (2-3 мультиапертурных сетки). После того, как ионы попадают в экранирующий слой плазмы в отверстии сетки, им за счет разницы потенциалов между первой и второй сетками (экранной сеткой и решеткой ускорителя) передается ускорение. Ионы посредством мощного электрического поля направляются через заборное отверстие. Конечная энергия иона определяется потенциалом плазмы, который, как правило, несколько превышает напряжение экранной сетки.

Конструкция ионного двигателя с сеткой

Отрицательное напряжение решетки ускорение не позволяет электронам из пучка плазмы, выходящей из двигателя, вернуться обратно к разряженной плазме. Это может не сработать из-за недостаточного отрицательного напряжения в сетке, что часто происходит в конце срока службы ионных двигателей. Выброшенные ионы двигают космический аппарат вперед согласно третьему закону Ньютона. Электроны с низкой энергией излучаются из отдельного катода – нейтрализатора, и попадают в пучок ионов для обеспечения равного количества положительных и отрицательных выбрасываемых частиц. Нейтрализация необходима для того, чтобы предотвратить получение космическим аппаратом результирующего отрицательного заряда, что может притянуть ионы обратно к аппарату и заглушить двигатель.

А Вы смотрели: Уравнение Дрейка

Отбросить лишнее

Как вспоминает Олег, в процессе конструирования геликонного источника плазмы для VASIMR обнаружилось любопытное теоретическое следствие: «Представьте себе, что вы начинаете закачивать энергию в газ с помощью антенны. Сначала ничего не происходит, потом происходит электрический пробой, газ ионизируется, образуется плазма. Именно такая холодная и плотная плазма поступает в циклотронную ступень двигателя VASIMR, а горячая плазма там не нужна — это лишние затраты энергии. Если продолжить закачивать энергию в геликонный источник, по нашей теории должен наблюдаться резкий скачок в его эффективности: после полной ионизации газа (‘выгорания’) вся энергия идет на разогрев электронов плазмы, а потери на излучение составляют лишь малую часть. Эксперименты подтвердили наличие этого эффекта, что навело меня на идею создания эффективного и очень простого плазменного двигателя».

Прототип, который в MIT назвали мини-геликонным двигателем (mHT, mini-Helicon Thruster), по своей конструкции очень прост: это кварцевая трубка с навитой обмоткой для создания магнитного поля и антенной для возбуждения геликонной волны. Поступающий газ ионизируется высокочастотным радиоизлучением, плазма разогревается, а магнитное поле направляет плазменную струю в нужном направлении. «Наш двигатель отличается от VASIMR — он одноступенчатый, для нагрева плазмы не нужен циклотронный нагрев ионов, не нужно магнитное сопло, он компактнее, — объясняет Батищев.- При этом в качестве рабочего тела в VASIMR сначала использовали водород, потом перешли на гелий, сейчас используют аргон — более тяжелые газы снижают удельный импульс, зато повышают тягу. А наш двигатель способен работать практически на чем угодно — на азоте и даже на воздухе! Можно непрерывно менять состав рабочего тела, и двигатель будет продолжать работу».

По сравнению с современными плазменными двигателями мини-геликонный имеет ряд существенных преимуществ. Двигатели на эффекте Холла (к которым относятся российские СПД) не позволяют использовать полное сечение канала, разогнанные тяжелые ионы ксенона (очень дорогого и редкого газа) вызывают эрозию стенок камеры, для их работы необходимо высокое напряжение. СПД, как правило, снабжен двумя катодами, поскольку это одно из самых уязвимых мест конструкции, что значительно увеличивает габариты двигателя. «Мини-геликонный двигатель лишен всех этих недостатков: плазма не касается стенок, так что эрозия минимальна, зажигание автоматическое, не нужен катод, размеры могут быть любыми, от миниатюрных двигателей точной коррекции до больших и мощных — по нашим расчетам, двигатель мощностью 1 МВт будет иметь диаметр около 30 см, — говорит Олег Батищев. — Расходимость плазменного пучка у нас очень небольшая, около 10 градусов (для сравнения — в СПД она порядка 45 градусов). КПД нашего прототипа пока не очень высокое, около 20%, но это объясняется тем, что он работает на азоте, да и оптимизацией мы пока не занимались».

КОСМИЧЕСКИЙ ЭЛЕКТРОВОЗ

В Политехническом музее Москвы хранится уникальный экспонат — двигательная установка малой тяги с питанием от солнечных батарей, созданная в Институте атомной энергии им. И. В. Курчатова под руководством профессора Алексея Ивановича Морозова. Реактивную тягу этого стационарного плазменного двигателя (СПД) создает не поток газов или продуктов химической реакции топлива с окислителем, а плазма, разогнанная электромагнитным полем. Двигатели такого рода предназначены для перехода искусственных спутников Земли с одной орбиты на другую, стабилизации на орбите и других целей. Стационарные плазменные двигатели получили высокую оценку и за рубежом. СПД — единственная отечественная разработка, представленная в отделе космонавтики парижского Дома науки и техники.

Американский ракетный комплекс «Сатурн — Аполлон» при стартовой массе 2900 тонн выводит в космос только 129 тонн.

Стенд в Доме науки и техники (Париж), посвященный стационарным плазменным двигателям и их создателю — А. И. Морозову.

ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ. Так устроен стационарный плазменный двигатель (СПД).

Наука и жизнь // Иллюстрации

НЕСОРАЗМЕРНОСТЬ ЗАДАЧ И СРЕДСТВ

При запусках искусственных спутников Земли постоянно возникает одна и та же ситуация. Спутник выводится на первоначальную, опорную орбиту высотой около 150 километров. Далее его нужно перевести на рабочую орбиту, скажем, геостационарную, на высоту 36 тысяч километров. Для этого включают двигатель, который и производит нужный маневр, проработав некоторое время. Оценить произведенную им работу можно через понятие так называемой характеристической скорости. Суть его заключается в следующем.

Предположим, что имеются два абсолютно одинаковых аппарата: один, скажем, на орбите возле Земли, другой — в абсолютно пустом пространстве, без полей тяготения и других воздействий. Они одновременно включают двигатели, работающие в совершенно одинаковом режиме. Первый аппарат совершает маневры, садится на Луну, возвращается и вообще делает все, что требуется. А второй движется по прямой, не маневрирует, но его двигатель все время работает в том же режиме, что и у первого. В конце концов этот аппарат приобретает некую скорость, которая и называется характеристической. Она-то и определяет эффективность двигателя в данных условиях. Поскольку для каждого полета она своя, можно, сделав несложные расчеты, сразу и с большой точностью оценить, во сколько обойдется каждый маневр.

В 1897 году К. Э. Циолковский вывел для величины характеристической скорости несложную формулу:

V

=
w
ln
M
0/
M
1,

где w

— скорость истечения газов из сопла реактивного двигателя,
M
0 — начальная масса аппарата,
M
1 — его конечная масса.

Из формулы видно, что разгонять аппарат до скорости V,

большей скорости истечения w, за счет увеличения выбрасываемой массы крайне невыгодно. Если на долю топлива приходится 0,9 всей массы ракеты и, следовательно, конечная масса составляет 0,1 массы начальной (
M
0/
M
1 = 10), характеристическая скорость
V
= 2,3
w
. Когда это отношение масс уменьшается до 0,01, скорость возрастает только в два раза, и, даже сделав
M
0/
M
1 = 0,001, удастся получить всего
V
= 6,9
w
: величина логарифма растет очень медленно. Поэтому во время полета приходится катастрофически уменьшать массу аппарата: вспомним, как выглядят тяжелая ракета-носитель на старте и спускаемый аппарат в конце полета. Этот путь в принципе возможен, но для высоких скоростей практически неосуществим.

Остается второй вариант: увеличить скорость истечения реактивных газов. Характеристическая скорость зависит от нее линейно, то есть пропорционально. Она вырастет во столько же раз, во сколько увеличится скорость истечения газов.

Современные реактивные двигатели работают, как правило, за счет химической реакции соединения компонентов топлива и окислителя. Чем больше энергии выделяется в ходе этой реакции, тем выше скорость истечения из сопла двигателя ее газообразных продуктов одинаковой массы. Почти предельную энергию обеспечивает реакция кислорода с водородом (больше дает только фтор, особенно атомарный, с водородом; но и сам окислитель, и фтористый водород невероятно химически активны и агрессивны). Однако и она неспособна создать потоки со скоростями больше 4-5 км/с. Для современной космической техники этого во многих случаях недостаточно.

Чтобы вывести спутник на круговую орбиту, носитель должен развить скорость около 8 км/с; чтобы отойти от Земли в космическое пространство — более 11 км/с; соответствующие характеристические скорости будут процентов на тридцать выше. И если скорость истечения газов сделать порядка характеристической скорости для данного маневра, конечная масса аппарата будет соизмерима с массой начальной. Она может быть меньше пусть даже в два-три раза, а не в десятки и сотни, как сегодня. Для этого нужны другие двигатели, основанные не на химических реакциях, а на других процессах. Они потребуют новых источников энергии, ибо, чем выше скорость истечения рабочего вещества, тем больше энергии требуется на единицу тяги:

P

/
F
=
w
/2η,

где Р

— мощность двигателя в ваттах,
F
— сила тяги в ньютонах,
w
— скорость истечения в м/с, η — коэффициент полезного действия.

В космосе есть только два источника энергии — Солнце и ядерные реакции.

Внутриядерную энергию получают либо из реакций деления тяжелых элементов, либо путем синтеза элементов легких. Реакция синтеза способна дать колоссальное количество энергии, но управлять ею в ближайшее время вряд ли научатся. Остаются реакторы, основанные на делении, а для маленьких аппаратов — изотопные батареи. Ядерная энергетика, однако, себя сильно скомпрометировала и нажила множество противников.

На внутренних орбитах источником энергии может служить Солнце. Был, например, проект использовать бортовые зеркала-концентраторы, собирающие солнечную энергию на теплообменнике с водородом. Нагретый до 2000о газ потечет из сопла реактивного двигателя со скоростью порядка 10 км/с, что уже вполне достаточно для маневра в околоземном пространстве. Однако такая система громоздка и ненадежна, поэтому основным источником электроэнергии на борту пока остаются солнечные батареи. Если в 60-х годах киловатт мощности снимался с панели массой около центнера, то сегодня «рекордные» устройства дают ту же мощность с 20 килограммов массы. В целом же бортовые батареи дают суммарную мощность не выше 20 кВт и остаются достаточно эффективными только сравнительно недалеко от Солнца — внутри орбиты Марса или пояса астероидов. Интенсивность света сильно падает с расстоянием (I

~
R
-2), и для полетов к удаленным планетам волей-неволей придется использовать реакторы. Ибо переход на скорости истечения газов, соизмеримые с характеристическими, — абсолютно неизбежный путь развития космонавтики.

ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ ВМЕСТО ХИМИЧЕСКОЙ

Чтобы поднять с Земли и разогнать до первой космической скорости огромный космический аппарат, требуются мощности в миллионы и десятки миллионов киловатт. На этом этапе никаких реальных альтернатив реактивным двигателям на химическом топливе пока нет. Но если аппарат уже выведен на орбиту, им вполне можно управлять при помощи двигателей малой мощности. Они могут поддерживать ориентацию спутника, стабилизировать его на орбите, переводить с одной орбиты на другую.

Существует несколько конструкций таких двигателей. В настоящее время, например, созданы хорошие модели так называемых электронагревных двигателей. Газ — аммиак или гидразин — пропускают через катализатор, который его разлагает на молекулы, и нагревают изотопным источником тепла или электрической печкой. Молекулы имеют гораздо меньшую массу и при нагреве приобретают более высокую скорость. Но есть и другой путь: получить направленный поток не молекул, а ионов или плазмы, разогнав их при помощи электрических и магнитных полей.

Путь этот чрезвычайно перспективен. Элементарные расчеты показывают, что ион водорода, пройдя разность потенциалов 4,5 вольта (напряжение батарейки «Крона» в два раза выше), приобретет скорость 30 км/с — гораздо большую, чем может дать химическая реакция. Неудивительно, что в начале 60-х годов, после запуска первого искусственного спутника Земли, работы по созданию электрореактивных двигателей развернулись сразу во многих странах, но ведущими оставались СССР и США. В нашей стране были созданы очень сильные научные коллективы, среди которых особенно выделилась группа из Института атомной энергии. Ей удалось найти интересные научные решения, благодаря которым мы до сих пор удерживаем лидирующее положение в этой области, а созданные ею стационарные плазменные двигатели (СПД) признаны лучшими в мире.

КАК РАБОТАЕТ СПД

Ускорение ионов в полях позволяет получить скорости, которые решают все проблемы обозримого будущего космонавтики. Оставалось эту принципиальную возможность реализовать в металле. Для этого есть два пути.

Можно взять два электрода и приложить к ним постоянное напряжение. Пусть на одном будет напряжение +4,5 вольта, а потенциал второго (катода) будем считать нулевым. Положительный электрод (анод) соединен с ионизатором газа. Ионы, вышедшие из него через отверстие в аноде, начнут ускоряться в электрическом поле, устремляясь к электроду с нулевым потенциалом. Если в нем сделать отверстие, ионы пролетят сквозь него в пространство со скоростью 30 км/с. А электроны, оставшиеся в ионизаторе, уходят через электрическую цепь и источник питания на катод. Эта система получила название ионный двигатель: в зоне его ускорения находятся только ионы.

На самом же деле водородных ионных двигателей на 4,5 вольта нет. Причина этого одна: в ускоряющем промежутке невозможно получить высокую плотность частиц. Ионы создают в нем довольно большой объемный заряд, который быстро экранирует потенциал нулевого электрода и «запирает» поток. Чтобы обеспечить достаточно большой ток, нужно создать высокую напряженность поля, как можно сильнее сдвинув электроды. Но предельное расстояние между ними ограничено долями миллиметра: в слишком узком зазоре возникнет пробой. Скорость наращивать тоже нельзя: это ведет к повышению энергетических затрат на единицу тяги. Поэтому в таком двигателе используют тяжелые частицы — ионы ксенона, ртути или цезия, работают при напряжении порядка тысячи вольт и получают довольно приличный ток и сравнительно большую тягу.

Второй путь — плазменные двигатели, где в зоне ускорения имеются и электроны, и ионы. Рассмотрим подробнее, как они работают.

Наиболее существенный недостаток ионных двигателей — появление объемного заряда в ускоряющем промежутке. Казалось бы, этого можно избежать, поместив в него электроны и получив квазинейтральную плазму. Однако в электрическом поле сразу же начнут ускоряться более легкие электроны, причем до скоростей в тысячи и десятки тысяч километров в секунду. Это в сотни раз больше, чем нам нужно.

Чтобы преодолеть подвижность электронов, их нужно к чему-то «привязать». Это легко сделать, создав в промежутке магнитное поле, перпендикулярное электрическому. В магнитном поле заряженные частицы вращаются по круговой, так называемой ларморовской, орбите. У электронов ее диаметр в наших условиях — десятые доли миллиметра, а у ионов — порядка метра. Ионы практически не чувствуют магнитного поля, движутся только под действием поля электрического и с большой скоростью покидают двигатель. Таким образом, система превращается в ускоритель ионов, в котором мешающего объемного заряда нет.

На первый взгляд плазменный двигатель — очень простое устройство. Это кольцевой электромагнит, в зазор которого помещена камера (ее называют также каналом) из диэлектрического материала. В глубине камеры расположен анод. Снаружи, возле среза камеры, расположен катод-нейтрализатор. Рабочее вещество (ксенон) поступает в канал и вблизи анода ионизуется. Ионы ускоряются в электрическом поле и вылетают из двигателя, создавая реактивную тягу. А электроны, как и в ионном двигателе, попадают на анод, проходят по цепи до катода-нейтрализатора и поступают в ионный поток, нейтрализуя и его, и двигатель. Делать это абсолютно необходимо — в противном случае спутник, выбрасывая положительные ионы из двигателя, приобрел бы отрицательный потенциал большой величины.

СПД НА ЗЕМЛЕ И В КОСМОСЕ

Наша страна продолжает лидировать в области конструирования электроракетных систем. Стационарные плазменные двигатели стоят почти на шестидесяти отечественных спутниках в качестве двигателей коррекции. Они подстраивают положение спутника на орбите и в принципе могут перевести его, скажем, с опорной орбиты на высоте 150 — 200 километров на геостационарную орбиту высотой 36 тысяч километров. Для этой операции понадобятся три-четыре месяца непрерывной работы, за которые будет выброшено всего-навсего десять килограммов вещества. Специалисты считают, что в ближайшие два-три года начнется настоящий бум использования электроракетных двигателей и для коррекции орбит искусственных спутников Земли, и для полетов на другие планеты. Для всех этих работ СПД незаменимы; они будут стоять и на автоматической станции, которую по программе Российской академии наук запустят к спутнику Марса Фобосу в самом начале третьего тысячелетия. А вот для ориентации космического аппарата они слишком мощны, для этого нужны совсем миниатюрные конструкции.

И для решения чисто земных задач поле деятельности плазменных двигателей огромно. Уже сейчас СПД в соответствующем исполнении используются для обработки различных поверхностей — из металла, стекла, полупроводников. Но, по-видимому, область их применения, а точнее — принципов, в них заложенных, будет несравненно шире, тем более, что мощность подобных систем может быть увеличена в тысячи раз. И в первую очередь связано это с принципиально новым их конструктивным элементом — прозрачными магнито-электронными электродами, которые во многих случаях могут заменить электроды твердотельные.

Подробности для любознательных

ИСТОРИЯ ПЛАЗМЕННЫХ ДВИГАТЕЛЕЙ

Первые предпосылки для создания плазменно-ионных двигателей возникли более ста лет назад.

В конце прошлого века начались интенсивные работы по изучению газов при помощи электрического разряда. Исследуемый газ под невысоким давлением помещался в стеклянную трубку с впаянными электродами — анодом и катодом. При дальнейшем снижении давления в трубке стали видны лучи, исходящие из катода. Детальное исследование показало, что эти «катодные лучи» — поток электронов.

В 1886 году обнаружилось еще одно интересное явление. Если в плоском катоде проделать отверстия («каналы»), то через них в обратном направлении протянутся другие лучи, которые назвали каналовыми. Это были потоки ионизованных атомов газа. Однако в то время, разумеется, никто не предполагал, что их можно использовать для получения реактивной тяги.

Первый эффективный ионный двигатель был создан американцем Г. Кауфманом в 60-х годах и использован в космическом эксперименте Sert-II. В двигателях этого типа имеются ионизационная камера с электрическим разрядником и ускоряющий электрод в виде пластины с отверстиями. Рабочий газ (скажем, ксенон) поступает в камеру, где его атомы распадаются на электроны и положительно заряженные ионы. Поток ионов выходит из камеры и ускоряется под действием напряжения, приложенного к дырчатому электроду. Электроны проходят по цепи питания двигателя и поступают на нейтрализатор, стоящий на пути ионного пучка. Ионы, удаляясь от двигателя, увлекают их за собой.

Примерно в это же время в нашей стране был создан плазменно-эрозионный двигатель конструкции А. М. Андрианова. Он стал первым устройством такого типа, выведенным в космос: в 1964 году его установили на аппарате «Зонд-2» в качестве двигателя ориентации с питанием от солнечных батарей.

Двигатель выполнен в виде двух цилиндрических коаксиальных электродов, разделенных изолятором. К центральному электроду подведена поджигающая игла, соединенная с конденсаторной батареей. При разряде конденсатора между иглой и электродом происходит разряд, вызывающий их испарение (эрозию) и ионизацию. Эта «затравочная» плазма поступает в промежуток между электродами, на которые подано высокое напряжение основной конденсаторной батареи. Появление плазмы инициирует поверхностный разряд, который испаряет материал изолятора и ионизует его молекулы. Нагрев и взаимодействие тока с собственным магнитным полем ускоряют плазму.

К середине 60-х годов в нашей стране были получены обнадеживающие результаты по разработке плазменных двигателей разных типов. Но наибольший успех пришел к группе из Института атомной энергии им. И. В. Курчатова, которой руководили А. И. Морозов и Г. Я. Щепкин. Этот коллектив к маю 1969 года создал работающий макет двигательной установки. После конструкторской доработки в ОКБ «Факел» двигатель в последних числах 1970 года был установлен на спутнике «Метеор»и выведен на орбиту. С тех пор прошло почти тридцать лет, но этот стационарный плазменный двигатель (СПД) все еще не имеет конкурентов — другие схемы оказались менее эффективными и штатной принадлежностью космических аппаратов не стали.

В середине 80-х годов работы над СПД из Института атомной энергии были переведены в Московский институт радиотехники, электроники и автоматики (МИРЭА) и продолжены в лаборатории профессора Антонины Ивановны Бугровой. В 1992 году лабораторию посетил вице-президент франко-европейской космической фирмы SEP г-н Буланже. Он предложил заключить контракт на создание патентно чистой модели СПД с улучшенными характеристиками.

Дело в том, что двигатели имеют два существенных недостатка: большую расходимость плазменного пучка (до 45о) и кпд порядка 50%, что было меньше их возможностей. И была у них одна странность: наиболее сильная тяга получалась при геометрии полей, с точки зрения теории далекой от оптимальной. Когда причины такого поведения удалось понять, сотрудники лаборатории МИРЭА изменили конфигурацию канала, анода и магнитного поля. Это сразу же дало удивительные результаты: кпд вырос почти до 70%, а расходимость пучка стала меньше 10о. Так были созданы СПД второго поколения.

Двигатель из бутылки

Мини-геликонный двигатель столь прост по своей конструкции, что это навело Олега на мысль о популярной демонстрации: «Мы работали с мощными постоянными магнитами, и один из студентов не удержал их при изменении конструкции стенда — магниты устремились навстречу друг другу, столкнулись и раскололись на куски. А пока мы ждали новые, мне пришла в голову идея сделать двигатель из подручных средств, чтобы показать, насколько он прост. Я решил использовать в качестве камеры стеклянную бутылку из-под кока-колы, а геликонную антенну вырезать из жестяной банки».

Демонстрация плазменного двигателя из бутылки и банки принесла группе Батищева широкую известность и буквально мировую славу: телеканалы охотно транслировали эффектную запись эксперимента, где за кадром голос одного из студентов зачитывает показания амперметра, в бутылке загорается свечение, и струя плазмы вырывается из отпиленного донышка (разумеется, эксперимент проходит в вакуумной камере).

Чтобы убедиться, что мини-геликон представляет собой не просто источник плазмы, а именно двигатель, исследователи измерили характеристики полученной плазмы. Энергию ионов измеряли двумя методами — спектрометрическим, за счет измерения доплеровского сдвига спектральной линии, и с помощью энергетического анализатора с замедляющим потенциалом. Скорость ионов составила от 10 до 40 км/с. Причем ее можно варьировать за счет изменения расхода газа и подаваемой мощности, изменяя тем самым удельный импульс. Но самым простым и эффектным способом демонстрации наличия тяги оказалось, по словам Олега, очень простое решение: «Мы просто подвесили наш прототип на двух лесках к потолку вакуумной камеры на магнитах и измерили отклонение трубочки при холодной продувке (подаче газа) и при истечении струи плазмы. Разницу было видно невооруженным глазом!»

Характеристики

Ионная линза постоянно бомбардируется небольшим количеством вторичных ионов и разрушается или стирается, что уменьшает КПД двигателя и срок службы. Ионным двигателям требуется возможность эффективной и непрерывной работы в течении многих дет. Для уменьшения разрушения было использовано несколько методов. Самым достойным внимания было изменение различных видов топлива. Атомы ртути или цезия использовались в качестве топлива при испытаниях в 1960-х и 1970-х годах, но они прилипали к решеткам и разрушали их. С другой стороны, атомы ксенона – гораздо менее коррозионные, что сделало их отличным топливом практически для всех типов ионных двигателя. НАСА продемонстрировало непрерывную работу двигателя «NSTAR» в течение 16 000 часов (1,8 года), а продолжающиеся испытания показывают превышение этого срока вдвое. Электростатические ионные двигатели также достигли удельного импульса в 30-100 кН*с/кг, что превышает показатели большинства других типов ионных двигателей. Также они разогнали ионы до скоростей, достигающих 100 км/с.

Ионный двигатель с сеткой

В январе 2006 года Европейское космическое агентство совместно с Австралийским национальным университетом, заявили об успешных испытаниях улучшенного электростатического ионного двигателя – «Dual-Stage 4-Grid», достигший скорости в 210 км/с, что вчетверо превышало достигнутые ранее показатели, что позволяет достигнуть удельного импульса в четыре раза больше. У стандартных электростатическим ионных двигателей есть всего две решетки – высокого и низкого напряжения соответственно, обе из которых занимаются добычей ионов и ускорением корабля. Однако, когда разница разрядов между этими решетками достигает примерно 5 кВ, некоторые из частиц, полученных из камеры, сталкиваются с решеткой низкого напряжения, разрушают ее и ставят под угрозу долговечность двигателя. Это ограничение успешно преодолевается при использовании двух пар сеток. Первая пара работает при высоком напряжении, создавая разницу потенциалов между сетками на уровне 3 кВ. Эта пара сеток отвечает за извлечение заряженных частиц топлива из газовой камеры. Вторая пара, работающая при низком напряжении, генерирует электрическое поле, ускоряющее выходящие наружу частицы и обеспечивающее тягу. Среди других преимуществ нового типа двигателя – более компактный дизайн, что позволяет вырабатывать более сильную тягу, и меньший угол выхода шлейфа выходящих газов в 3 градуса – показатель, как сообщается, в пять раз меньший, чем достигнутый ранее. Это уменьшает объем топлива, нужный для коррекции положения аппарата, из-за меньших колебаний в направлении вектора двигателем.

А Вы смотрели: Квантовая жидкость и сверхтекучесть

К далеким планетам

Дальние космические полеты с использованием геликонных плазменных двигателей выглядят пока еще фантастически, но все же гораздо более предпочтительны, чем на химическом топливе, — была бы только энергия (ее планируется получать от ядерной энергетической установки). Рабочее тело может быть любым: азот, аргон, воздух, даже вода (правда, этот вопрос нуждается в дополнительных исследованиях).

По мнению Олега Батищева, плазменные геликонные двигатели имеют замечательные перспективы уже в самом ближайшем будущем — когда начнется освоение околоземного пространства и Луны частными компаниями. Сейчас срок службы различных спутников во многом ограничен запасом топлива или рабочего тела для двигателей коррекции орбиты. Мини-геликонные двигатели в этом отношении превосходят любые химические — они экономичны, имеют большой удельный импульс и способны использовать в качестве рабочего тела дешевый азот. «Или даже воздух, — добавляет Олег. — Представьте себе спутник на эллиптической орбите, который в перигее способен пополнять запасы рабочего тела, или низкоорбитальный спутник с неисчерпаемым запасом рабочего тела, которое он берет из атмосферы!»

Статья опубликована в журнале «Популярная механика» (№2, Февраль 2010).

Полвека в создании ионного двигателя

Понятие об электрической силовой установке присутствовало в течение 50 лет или более, но было сочтено слишком экспериментальным направлением, не способным взять на себя реализацию крупных проектов. Только теперь это направление начинает обретать реальные приложения. Например, для сохранения геостационарных спутников на правильной орбите, чтобы противостоять аэродинамическому сопротивлению в сильно разреженной атмосфере на высоте 200 км над поверхностью Земли. Или во время межпланетной миссии, такой как Deep Space 1- первой экспериментальной миссией, которая использовала ионные двигатели, чтобы изначально продемонстрировать возможности технологии в отношении астероида 9969 Braille и кометы Borrelly 15 лет назад, пишет «YAHOO».

Имелся и еще один проект со спутником, который в течение четырех лет до 2013 года изучал гравитационное поле Земли.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: