Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину


Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.

Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

гравитационная постоянная

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено[источник не указан 416 дней

].

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G

со времён Кавендиша увеличилась, но и его результат[5] был уже достаточно близок к современному.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по её уточнению продолжают различаться. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени (неизменность

гравитационной постоянной проверена с точностью до Δ
G
/
G
~ 10−17), но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов[6]. В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено[7][8].

В 2000 г. было получено значение гравитационной постоянной G = 6,673 90 × 10 − 8 {\displaystyle G=6{,}67390\times 10^{-8}} см3 г−1 c−2, с погрешностью 0,0014 %[9].

В октябре 2010 в журнале Physical Review Letters появилась статья[10], предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины G

, рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины
G
, произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах[11].

В 2013 г. значение гравитационной постоянной было получено группой ученых, работавших под эгидой Международного бюро мер и весов:
G
= 6,67554(16) × 10−11 м3·с−2·кг−1 (стандартная относительная погрешность 25 ppm (или 0,0025 %), первоначальное опубликованное значение несколько отличалось от окончательного из-за ошибки в расчётах и было позже исправлено авторами)[12][13].

В июне 2014 года в журнале «Nature» появилась статья итальянских и нидерландских физиков, где были представлены новые результаты измерения G

, сделанные при помощи атомных интерферометров[14]. По их результатам
G
= 6,67191(99) × 10−11 м3·с−2·кг−1 с погрешностью 0,015 % (150 ppm).

Авторы указывают, что поскольку эксперимент с применением атомных интерферометров основан на принципиально других подходах, он помогает выявить некоторые систематические ошибки, не учитывающиеся в других экспериментах.

В августе 2020 года в журнале «Nature» физиками из Китая и России были опубликованы[15] результаты новых измерений гравитационной постоянной с улучшенной точностью (погрешность 12 ppm, или 0,0012 %). Были использованы два независимых метода — измерение времени качаний торсионного подвеса и измерение углового ускорения, получены значения G

, соответственно:
G
= 6,674184(78) × 10−11 м3·с−2·кг−1;
G
= 6,674484(78) × 10−11 м3·с−2·кг−1.

Оба результата в пределах двух стандартных отклонений совпадают с рекомендованным значением CODATA, хотя отличаются друг от друга на ~2,5 стандартных отклонения.

По астрономическим данным постоянная G

практически не изменялась за последние сотни миллионов лет, скорость её относительного изменения (d
G
/d
t
)/
G
не превышает нескольких единиц на 10−11 в год[16][17][18].

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с2.

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Формула света

Если ракета пролетит рядом с планетой, её скорость изменится. Либо уменьшится, либо возрастёт. Это зависит от того, с какой стороны от планеты она пролетит.

Гравитационные манёвры Вояджера

Когда американские космические аппараты «Вояджеры» совершали свой знаменитый Гранд тур по внешней Солнечной системе, они выполнили несколько так называемых гравитационных манёвров вблизи планет-гигантов. Больше всего повезло «Вояджеру-2», который пролетел мимо всех четырёх больших планет. График его скорости см. на рисунке:

Из графика видно, что после каждого сближения с планетой (кроме Нептуна), скорость космического аппарата возрастала на несколько километров в секунду.

На первый взгляд это может показаться странным: объект влетает в гравитационное поле и ускоряется, затем вылетает из поля и тормозится. Скорость прилёта должна равняться скорости вылета. Откуда появляется дополнительная энергия? Дополнительная энергия появляется потому, что есть третье тело – Солнце. При пролёте рядом с планетой космический аппарат обменивается с ней импульсом и энергией. Если при таком обмене гравитационная энергия планеты в поле Солнца уменьшается, то кинетическая энергия космического аппарата (КА) увеличивается, и наоборот.

Как должен пролететь мимо планеты КА, чтобы его скорость возросла? Ответить на этот вопрос нетрудно. Пусть КА пересечет орбиту планеты прямо перед ней. В этом случае, получив дополнительный импульс в направлении на планету, он передаст ей дополнительный импульс в противоположном направлении, то есть в направлении её движения. В результате планета перейдёт на чуть более высокую орбиту, и её энергия возрастёт. Энергия КА при этом, соответственно, уменьшится. Если же КА пересечёт орбиту позади планеты, то он, чуть-чуть притормозив её движение, переведёт планету на более низкую орбиту. Скорость КА при этом возрастёт.

Конечно, масса КА несоизмерима с массой планеты. Поэтому изменение орбитальных параметров планеты при гравитационном манёвре бесконечно малая величина, не поддающаяся измерению. Тем не менее, энергия планеты изменяется, и мы можем убедиться в этом, проведя гравитационный манёвр и увидев, что скорость КА изменяется. Вот, к примеру, как пролетел «Вояджер-2» вблизи Юпитера 9 июля 1979 года (см. рис.). При подлёте к Юпитеру скорость космического аппарата составляла 10 км/сек. В момент максимального сближения она увеличилась до 28 км/сек. А после того, как «Вояджер-2» вылетел из гравитационного поля газового гиганта, уменьшилась до 20 км/сек. Таким образом, в результате гравитационного манёвра скорость космического аппарата возросла в два раза и стал гиперболической. То есть превысила скорость, необходимую для вылета из Солнечной системы. На орбите Юпитера скорость вылета из Солнечной системы около 18 км/сек.

Из этого примера видно, что Юпитер (или другая планета) может разогнать какое-нибудь тело до гиперболической скорости. А значит, он может «выбросить» это тело из Солнечной системы. Может быть, современные космогонисты правы? Может быть, действительно планеты-гиганты выбросили ледяные глыбы на далёкие окраины Солнечной системы и, таким образом, сформировали кометное облако Оорта. Прежде чем ответить на этот вопрос, посмотрим, на какие гравитационные манёвры способны планеты?

Принципы гравитационного манёвра

Впервые я познакомился с гравитационным манёвром в 9-м классе на краевой олимпиаде по физике. Задача была такая. С Земли стартует ракета со скоростью V (достаточна, чтобы вылететь из поля притяжения). У ракеты есть двигатель с тягой F, который может работать время t. В какой момент времени нужно включить двигатель, чтобы конечная скорость ракеты была максимальная? Сопротивлением воздуха пренебречь.

Сначала мне показалось, что не важно, когда включить двигатель. Ведь вследствие закона сохранения энергии, конечная скорость ракеты должна быть одинаковой в любом случае. Оставалось посчитать конечную скорость ракеты в двух случаях: 1. двигатель включаем в начале, 2. двигатель включаем после вылета из поля притяжения Земли. После чего сравнить результаты и убедиться, что конечная скорость ракеты в обоих случаях одинакова. Но потом я вспомнил, что мощность равна: сила тяги умножить на скорость. Поэтому мощность ракетного двигателя будет максимальна, если включить двигатель сразу на старте, когда скорость ракеты максимальна. Итак, правильный ответ: двигатель включаем сразу же, тогда конечная скорость ракеты будет максимальной.

И хотя я задачу решил правильно, но проблема осталась. Конечная скорость, а, значит, и энергия ракеты ЗАВИСИТ от того, в какой момент времени включить двигатель. Вроде бы явное нарушение закона сохранения энергии. Или нет? В чём тут дело? Энергия должна сохраняться! На все эти вопросы я пытался ответить уже после олимпиады.

Пусть у нас есть ракета массы М с двигателем, который создаёт тягу силой F. Поместим эту ракету в пустое пространство (вдали от звёзд и планет) и включим двигатель. С каким ускорением будет двигаться ракета? Ответ мы знаем из Второго закона Ньютона: ускорение a равно:

a = F/M

Теперь перейдём в другую инерциальную систему отсчёта, в которой ракета движется с большой скоростью, скажем, 100 км/сек. Чему равно ускорение ракеты в этой системе отсчёта? Ускорение НЕ ЗАВИСИТ от выбора инерциальной системы отсчёта, поэтому оно будет ТЕМ ЖЕ САМЫМ:

a = F/M

Масса ракеты также не изменяется (100 км/сек это ещё не релятивистский случай), поэтому и сила тяги F будет ТОЙ ЖЕ САМОЙ. И, следовательно, мощность ракеты ЗАВИСИТ от её скорости. Ведь мощность равна силе, умноженной на скорость. Получается, что если ракета движется со скоростью 100 км/сек, то мощность её двигателя в 100 раз мощнее, чем ТОЧНО ТАКОГО ЖЕ двигателя, находящегося на ракете, движущейся со скоростью 1 км/сек.

На первый взгляд это может показаться странным и даже парадоксальным. Откуда берётся огромная дополнительная мощность? Энергия ведь должна сохраняться!

Давайте разберёмся в этом вопросе.

Проще говоря, у быстро двигающейся ракеты её топливо обладает огромной кинетической энергией. И из этой энергии черпается дополнительная мощность для разгона ракеты. Теперь осталось сообразить, как это свойство ракеты можно использовать на практике.

Практическое применение

Предположим, в недалёком будущем вы собрались лететь на ракете в систему Сатурна на Титан:

чтобы исследовать анаэробные формы жизни.

Долетели до орбиты Юпитера и выяснилось, что скорость ракеты упала почти до нуля. Не рассчитали как следует траекторию полёта или топливо оказалось контрафактным. А может, метеорит попал в топливный отсек, и почти всё топливо было потеряно. Что делать?

У ракеты есть двигатель и остался небольшой запас горючего. Но максимум, на что способен двигатель – увеличить скорость ракеты на 1 км/сек. Этого явно недостаточно, чтобы долететь до Сатурна. И вот пилот предлагает такой вариант.

«Входим в поле притяжения Юпитера и падаем на него. В результате Юпитер разгоняет ракету до огромной скорости – примерно 60 км/сек. Когда ракета разгонится до этой скорости, включаем двигатель. Мощность двигателя при такой скорости возрастёт многократно. Затем вылетаем из поля притяжения Юпитера. В результате такого гравитационного манёвра скорость ракеты возрастает не на 1 км/сек, а значительно больше. И мы сможем долететь до Сатурна».

Но кто-то возражает.

«Да, мощность ракеты вблизи Юпитера возрастёт. Ракета получит дополнительную энергию. Но, вылетая из поля притяжения Юпитера, мы всю эту дополнительную энергию потеряем. Энергия должна остаться в потенциальной яме Юпитера, иначе будет что-то вроде вечного двигателя, а это невозможно. Поэтому пользы от гравитационного манёвра не будет. Только зря время потратим».

Что вы об этом думаете?

Итак, ракета находится недалеко от Юпитера и почти неподвижна относительно него. У ракеты есть двигатель с топливом, которого хватит, чтобы увеличить скорость ракеты только на 1 км/сек. Чтобы повысить КПД двигателя, предлагается совершить гравитационный манёвр: «уронить» ракету на Юпитер. Она будет двигаться в его поле притяжения по параболе (см. фото). И в самой низкой точке траектории (помечена красным крестиком на фото) включить двигатель. Скорость ракеты вблизи Юпитера составит 60 км/сек. После того, как двигатель её дополнительно разгонит, скорость ракеты возрастёт до 61 км/сек. Какая скорость будет у ракеты, когда она вылетит из поля притяжения Юпитера?

Эта задача по силам школьнику старших классов, если, конечно, он хорошо знает физику. Сначала нужно написать формулу для суммы потенциальной и кинетической энергий. Затем вспомнить формулу для потенциальной энергии в поле тяготения шара. Посмотреть в справочнике, чему равна гравитационная постоянная, а также масса Юпитера и его радиус. Используя закон сохранения энергии и произведя алгебраические преобразования, получить общую конечную формулу. И наконец, подставив в формулу все числа и проделав вычисления, получить ответ. Я понимаю, что никому (почти никому) не охота вникать в какие-то формулы, поэтому постараюсь, не напрягая вас никакими уравнениями, объяснить решение этой задачи «на пальцах». Надеюсь, получится!

Если ракета неподвижна, её кинетическая энергия равна нулю. А если ракета движется со скоростью 1 км/сек, то будем считать, что её энергия 1 единица. Соответственно, если ракета движется со скоростью 2 км/сек, то её энергия 4 единицы, если 10 км/сек, то 100 единиц и т.д. Это понятно. Половину задачи мы уже решили.

В точке, помеченной крестиком:

скорость ракеты 60 км/сек, а энергия 3600 единиц. 3600 единиц достаточно, чтобы вылететь из поля притяжения Юпитера. После разгона ракеты её скорость стала 61 км/сек, а энергия, соответственно, 61 в квадрате (берём калькулятор) 3721 единицы. Когда ракета вылетает из поля притяжения Юпитера, она тратит только 3600 единиц. Остаётся 121 единица. Это соответствует скорости (берём корень квадратный) 11 км/сек. Задача решена. Это не приближённый, а ТОЧНЫЙ ответ.

Мы видим, что гравитационный манёвр можно использовать для получения дополнительной энергии. Вместо того, чтобы разогнать ракету до 1 км/сек, её можно разогнать до 11 км/сек (энергия в 121 раз больше, КПД – 12 тысяч процентов!), если рядом будет какое-нибудь массивное тело вроде Юпитера.

За счёт чего мы получили ОГРОМНЫЙ энергетический выигрыш? За счёт того, что оставили израсходованное топливо не в пустом пространстве вблизи ракеты, а в глубокой потенциальной яме, созданной Юпитером. Израсходованное топливо получило большую потенциальную энергию со знаком МИНУС. Поэтому ракета получила большую кинетическую энергию со знаком ПЛЮС.

Поворот вектора скорости вблизи планеты

Предположим, мы пролетаем на ракете вблизи Юпитера и хотим увеличить её скорость. Но топлива у нас НЕТ. Скажем так, у нас есть немного топлива, чтобы подкорректировать свой курс. Но его явно недостаточно, чтобы заметно разогнать ракету. Можем ли мы заметно увеличить скорость ракеты, используя гравитационный манёвр?

В самом общем виде эта задача выглядит так. Мы влетаем в поле тяготения Юпитера с какой-то скоростью. Затем вылетаем из поля. Изменится ли наша скорость? И как сильно она может измениться? Давайте решим эту задачу.

С точки зрения наблюдателя, который находится на Юпитере (а точнее, неподвижен относительно его центра масс), наш манёвр выглядит так. Сначала ракета находится на большом расстоянии от Юпитера и движется к нему со скоростью V. Затем, приближаясь к Юпитеру, она разгоняется. Траектория ракеты при этом искривляется и, как известно, в самом общем виде представляет собой гиперболу. Максимальная скорость ракеты будет при минимальном сближении. Здесь главное – не врезаться в Юпитер, а пролететь рядом с ним. После минимального сближения ракета начнёт удаляться от Юпитера, а её скорость будет уменьшаться. Наконец, ракета вылетит из поля притяжения Юпитера. Какая у неё будет скорость? Точно такая же, как и была при влёте. Ракета влетела в гравитационное поле Юпитера со скоростью V и вылетела из него с точно такой же скоростью V. Ничего не изменилось? Нет изменилось. Изменилось НАПРАВЛЕНИЕ скорости. Это важно. Благодаря этому мы можем совершить гравитационный манёвр.

Действительно, для нас ведь важна не скорость ракеты относительно Юпитера, а её скорость относительно Солнца. Это так называемая гелиоцентрическая скорость. С такой скоростью ракета движется по Солнечной системе. Юпитер тоже движется по Солнечной системе. Вектор гелиоцентрической скорости ракеты можно разложить на сумму двух векторов: орбитальная скорость Юпитера (примерно 13 км/сек) и скорость ракеты ОТНОСИТЕЛЬНО Юпитера. Здесь нет ничего сложного! Это обычное правило треугольника для сложения векторов, которое изучают в 7-м классе. И этого правила ДОСТАТОЧНО, чтобы понять суть гравитационного манёвра.

У нас есть четыре скорости. V1 – это скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. U1 – это скорость ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. U2 – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. По величине U1 и U2 РАВНЫ, но по направлению они РАЗНЫЕ. V2 – это скорость ракеты относительно Солнца ПОСЛЕ гравитационного манёвра. Чтобы увидеть, как все эти четыре скорости связаны между собой, посмотрим на рисунок:

Зелёная стрелка АО – это скорость движения Юпитера по своей орбите. Красная стрелка АВ – это V1: скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОВ – это скорость нашей ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОС – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. Эта скорость ДОЛЖНА лежать где-то на жёлтой окружности радиуса ОВ. Потому что в своей системе координат Юпитер НЕ МОЖЕТ изменить величину скорости ракеты, а может только повернуть её на некоторый угол (альфа). И наконец, АС – это то, что нам нужно: скорость ракеты V2 ПОСЛЕ гравитационного манёвра.

Посмотрите, как всё просто. Скорость ракеты ПОСЛЕ гравитационного манёвра АС равна скорости ракеты ДО гравитационного манёвра АВ плюс вектор ВС. А вектор ВС это ИЗМЕНЕНИЕ скорости ракеты в системе отсчёта Юпитера. Потому что ОС – ОВ = ОС + ВО = ВО + ОС = ВС. Чем сильнее повернётся вектор скорости ракеты относительно Юпитера, тем эффективнее будет гравитационный манёвр.

Итак, ракета БЕЗ горючего влетает в поле притяжения Юпитера (или другой планеты). Величина её скорости ДО и ПОСЛЕ манёвра относительно Юпитера НЕ ИЗМЕНЯЕТСЯ. Но из-за поворота вектора скорости относительно Юпитера, скорость ракеты относительно Юпитера всё-таки изменяется. И вектор этого изменения просто прибавляется к вектору скорости ракеты ДО манёвра. Надеюсь, всё понятно объяснил.

Василий Янчилин

Уменьшение силы притяжения тел с их отдалением

Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

формула гравитационной постоянной

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

Работы Ньютона

Примечательно, что в трудах Ньютона (1684—1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Исаак Ньютон (1643 - 1727)

Исаак Ньютон (1643 — 1727)

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

А Вы смотрели: Что такое магнитные бури?

Размерность гравитационного параметра — м3с−2.

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • Fт = G (m1 *х m2) : r2.

В ней введены такие обозначения:

Сила тяготения
Гравитационная постояннаяG
Массы телm1, m2
Расстояние между теламиr

Формула гравитационной постоянной вытекает из этого закона:

  • G = (Fт Х r2) : (m1 х m2).

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Генри Кавендиш

Генри Кавендиш (1731 — 1810)

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

Установка Генри Кавендиша

Установка Генри Кавендиша

Более наглядное описание эксперимента доступно в видео ниже:

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см3 (сегодня более точные расчеты дают 5,52 г/см3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10−11 м³/(кг·с²), G = 6,71·10−11м³/(кг·с²) или G = (6,6 ± 0,04)·10−11м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

А Вы смотрели: Скопление Пегаса М15

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10-11 Нˑм2/кг2. Прошло три года — и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10-11 Нˑм2/кг2. Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10-11 Нˑм2/кг2.

смысл гравитационной постоянной

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра. По числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

закон всемирного тяготения гравитационная постоянная

Гравитационная постоянная – величина не постоянная

Постоянство – это свойство временного (чукотская мудрость)

(Gravitational constant – size not a constant)

Часть 1

Рис.1

В физике имеется только одна константа, связанная с гравитацией – это гравитационная постоянная (G). Эта постоянная получена экспериментально и не имеет связи с другими постоянными. В физике она считается фундаментальной.

Данной константе будет посвящено несколько статей, где я постараюсь показать несостоятельность ее постоянства и отсутствие фундамента под ней. Точнее сказать фундамент под ней есть, но несколько иной.

Каково значение постоянной гравитации и почему ее так тщательно измеряют? Чтобы разобраться, необходимо снова вернуться к закону всемирного тяготения. Почему физики приняли этот закон, мало того, они стали называть его «величайшим обобщением, достигнутым человеческим разумом» [1]. Его формулировка проста: два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

(1)

G – гравитационная постоянная

Из этой простой формулы следует множество весьма нетривиальных выводов, но нет ответа на основополагающие вопросы: каким образом и за счет чего действует сила тяготения?

Этот закон ничего не говорит о механизме возникновения силы притяжения, тем не менее, им пользуются до сих пор и будут, очевидно, пользоваться еще не одно столетие.

Одни ученые его охаивают, другие боготворят. И те и другие без него не обходятся, т.к. лучше ничего не придумали и не открыли. Практики, при освоении Космоса, зная несовершенство данного закона, используют поправочные таблицы, которые пополняются новыми данными после каждого запуска космических аппаратов.

Теоретики пытаются исправить данный закон путем ввода поправок, дополнительных коэффициентов, ищут доказательство факта существования ошибки в размерности гравитационной константы G, но ничего не приживается, а формула Ньютона остается в первоначальном виде.

Учитывая то многообразие неоднозначностей, неточностей при расчетах по данной формуле, ее все же нужно исправлять.

Широко известно выражение Ньютона: «Gravity is Universal», т. е. тяготение всемирно. Данный закон описывает гравитационное взаимодействие между двумя телами, где бы они не находились во Вселенной; в этом считается суть его универсализма. Гравитационная постоянная G, входящая в уравнение, рассматривается как универсальная константа природы.

Константа G позволяет проводить удовлетворительные расчеты в земных условиях, по логике, она и должна отвечать за энергетическое взаимодействие, но что взять с константы.

Интересно мнение ученого (Костюшко В.Е), который ставил реальные опыты для понимания и раскрытия законов природы, фраза: «У природы нет ни физических законов, ни физических констант с придуманными человеком размерностями». «В случае с гравитационной константой в науке утвердилось мнение, что эта величина найдена и численно оценена. Однако до сих пор не установлен ее конкретный физический смысл и это, прежде всего, потому, что на самом деле, в результате некорректных действий, а точнее грубейших ошибок, была получена ничего не значащая и совершенно бессмысленная величина с абсурдной размерностью» [2].

Я бы не хотел ставить себя в позу такой категоричности, но нужно, наконец, понять смысл этой постоянной.

В настоящее время значение гравитационной постоянной утверждено комитетом по фундаментальным физическим константам: G=6,67408·10-11м³/(кг·с²) [КОДАТА 2014] [3]. Несмотря на то, что данную константу тщательно измеряют, она не удовлетворяет требованиям науки. Все дело в том, что нет точной стыковки результатов между аналогичными измерениями, проводимыми в разных лабораториях мира.

Как отмечают Мельников и Пронин: «Исторически гравитация стала первой предметом научных исследований. Хотя прошло уже более 300 лет с момента появления закона тяготения, которым мы обязаны Ньютону, константа гравитационного взаимодействия остается наименее точно измеренной, по сравнению с остальными» [4].

Кроме того, остается открытым главный вопрос о самой природе гравитации и ее сущности. Как известно, сам закон всемирного тяготения Ньютона, проверен гораздо с большей точностью, чем точность константы G. Основное ограничение на точное определение гравитационных сил накладывает гравитационная константа, отсюда к ней такое пристальное внимание.

Одно дело уделять внимание, и совсем другое – точность совпадения результатов при измерении G. В двух самых точных измерениях ошибка может достигать порядка 1/10000. Но когда измерения проводились в разных точках планеты, то значения могли превышать экспериментальную ошибку на порядок и более!

Что же это за постоянная, когда такой огромный разброс показаний при ее измерениях? А может это совсем не постоянная, а измерение каких-то отвлеченных параметров. Или на измерения накладываются помехи, неизвестные исследователям? Вот здесь появляется новая почва для различных гипотез. Одни ученые ссылаются на магнитное поле Земли: «Взаимовлияние гравитационного и магнитного полей Земли приводит к тому, что земное тяготение будет сильнее в тех местах, где сильнее магнитное поле» [5]. Последователи Дирака утверждают, что гравитационная постоянная изменяется с течением времени и т.д.

Одни вопросы снимают из-за недоказанности, а другие появляются и это закономерный процесс. Но такое безобразие не может продолжаться бесконечно, надеюсь, мое исследование поможет установить направление к истине.

Первым, кому приписывают первенство эксперимента в измерении постоянной гравитации, был английский химик Генри Кавендиш, который в 1798 году задался целью определить плотность Земли. Для такого тонкого эксперимента им были использованы крутильные весы, изобретенные Дж. Мичеллом (сейчас являются экспонатом в национальном музее Великобритании). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы в поле тяготения Земли.

Экспериментальные данные, как оказалось впоследствии, пригодились для определения G. Полученный Кавендишем результат – феноменальный, отличался всего на 1% от принятого сегодня. Надо отметить какое это было великое достижение в его эпоху. За два с лишним века наука эксперимента продвинулась всего на 1%? Это невероятно, но факт. Притом, если учесть флуктуации и невозможность их преодолеть, значение G присваивается искусственно, то получается, что мы вообще не продвинулись в точности измерений со времен Кавендиша!

Да! Никуда мы не продвинулись, наука находится в прострации – не понимая гравитации!

Почему наука за три с лишним столетия практически не продвинулось в точности измерения данной константы? Может все дело в инструменте, использованном Кавендишем. Крутильные весы – изобретение 16 века, остались на вооружении ученых и по сей день. Конечно это уже не те крутильные весы, посмотрите на фотографию, рис. 1. Несмотря на навороты современной механики и электроники, плюс вакуум, стабилизация температуры, результат практически не сдвинулся с места. Очевидно, что-то здесь не так.

Наши предки и современники предпринимали различные попытки измерений G в разных географических широтах и в самых невероятных местах: глубоких шахтах, ледяных пещерах, скважинах, на телебашнях. Были усовершенствованы конструкции крутильных весов. Новые измерения, с целью уточнения гравитационной постоянной, повторялись и поверялись. Ключевой эксперимент был поставлен в Лос-Аламосе в 1982-м году Г. Лютером (G. Luther) и У. Таулером (W. Towler). Их установка напоминала крутильные весы Кавендиша, с шарами из вольфрама. Результат этих измерений 6,6726(50)?10-11 m3kg-1 s-2 (т.е. 6,6726±0,0005), был положен в основу, рекомендованных комитетом данных для науки и техники (CODATA) значений в 1986-м году [6].

Всё было спокойно до 1995 года, когда группа физиков в немецкой лаборатории PTB в Брауншвейге, используя модифицированную установку (весы плавали на поверхности ртути, с шарами большой массы), получили значение G на (0.6±0,008)% больше общепринятых [7]. В результате в 1998 году погрешность измерения G была увеличена почти на порядок.

В настоящее время активно обсуждаются эксперименты по проверке закона всемирного тяготения, основанные на атомной интерферометрии, для измерения микроскопических пробных масс и очередного тестирования ньютоновского закона тяготения в микромире.

Предпринимались попытки применения других способов измерения G, но корреляция между измерениями практически не меняется. Этот феномен сегодня называют нарушением закона обратных квадратов либо «пятой силой». К пятой силе сейчас относят и некие частицы (поля) Хиггса – частицы Бога.

Кажется, божественную частицу удалось зафиксировать, а точнее сказать, вычислить, так сенсационно преподнесли Миру весть физики, участвовавшие в эксперименте на Большом адронном коллайдере (БАК) (LHC) [8].

Ну, а что дальше? Дорогостоящая игрушка (БАК) ни на йоту не продвинула понимание гравитационного взаимодействия и его составляющей – гравитационной постоянной.

На бозон Хиггса надейся, но сам не плошай!

Так что же это за таинственная постоянная, которая гуляет сама по себе, а без нее никуда?

Читаем продолжение статьи

Назад Вперед

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r2.

Причем в ней используются такие обозначения:

Масса ЗемлиM
Радиус Землиr

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н)2, где н — высота над поверхностью Земли.

Примечания[ | ]

  1. В общей теории относительности обозначения, использующие букву G
    , применяются редко, поскольку там эта буква обычно используется для обозначения тензора Эйнштейна.
  2. По определению массы, входящие в это уравнение, — гравитационные массы, однако расхождения между величиной гравитационной и инертной массы какого-либо тела до сих пор не обнаружено экспериментально. Теоретически в рамках современных представлений они вряд ли отличаются. Это в целом было стандартным предположением и со времен Ньютона.
  3. Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию // Элементы.ру, 13.09.2013
  4. CODATA Internationally recommended values of the Fundamental Physical Constants (англ.). Дата обращения 7 марта 2020.
  5. Разные авторы указывают разный результат, от 6,754⋅10−11 м²/кг² до (6,60 ± 0,04)⋅10−11м³/(кг·с³) — см. Эксперимент Кавендиша#Вычисленное значение.
  6. Gillies G. T.
    The Newtonian Gravitational Constant // Sevres (France), Bureau Intern. Poids et Mesures, 1983, 135 p.
  7. Ляховец В. Д.
    Проблемы метрологического обеспечения измерений гравитационной постоянной. // Проблемы теории гравитации и элементарных частиц. Выпуск 17. — М., Энергоатомиздат, 1986. — с. 122-125.
  8. Игорь Иванов.
    Новые измерения гравитационной постоянной ещё сильнее запутывают ситуацию
    (неопр.)
    (13 сентября 2013). Дата обращения 14 сентября 2013.
  9. Так ли постоянна гравитационная постоянная? Архивная копия от 14 июля 2014 на Wayback Machine Новости науки на портале cnews.ru // публикация от 26.09.2002
  10. Brooks, Michael
    Can Earth’s magnetic field sway gravity?
    (неопр.)
    . NewScientist (21 сентября 2002). [Архивная копия на Wayback Machine Архивировано] 8 февраля 2011 года.
  11. Quinn Terry, Parks Harold, Speake Clive, Davis Richard.
    Improved Determination of
    G
    Using Two Methods (англ.) // Physical Review Letters. — 2013. — 5 September (vol. 111, no. 10). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.111.101102.
  12. Quinn Terry, Speake Clive, Parks Harold, Davis Richard.
    Erratum: Improved Determination of
    G
    Using Two Methods [Phys. Rev. Lett. 111, 101102 (2013)] (англ.) // Physical Review Letters. — 2014. — 15 July (vol. 113, no. 3). — ISSN 0031-9007. — doi:10.1103/PhysRevLett.113.039901.
  13. Rosi G., Sorrentino F., Cacciapuoti L., Prevedelli M., Tino G. M.
    Precision measurement of the Newtonian gravitational constant using cold atoms (англ.) // Nature. — 2014. — June (vol. 510, no. 7506). — P. 518—521. — ISSN 0028-0836. — doi:10.1038/nature13433.
  14. Li Qing, Xue Chao, Liu Jian-Ping, Wu Jun-Fei, Yang Shan-Qing, Shao Cheng-Gang, Quan Li-Di, Tan Wen-Hai, Tu Liang-Cheng, Liu Qi, Xu Hao, Liu Lin-Xia, Wang Qing-Lan, Hu Zhong-Kun, Zhou Ze-Bing, Luo Peng-Shun, Wu Shu-Chao, Milyukov Vadim, Luo Jun.
    Measurements of the gravitational constant using two independent methods (англ.) // Nature. — 2020. — August (vol. 560, no. 7720). — P. 582—588. — ISSN 0028-0836. — doi:10.1038/s41586-018-0431-5.
  15. van Flandern T. C.
    Is the Gravitational Constant Changing (англ.) // The Astrophysical Journal. — IOP Publishing, 1981. — September (vol. 248). — P. 813. — doi:10.1086/159205. — Bibcode: 1981ApJ…248..813V. Результат: (d
    G
    /d
    t
    )/
    G
    = (−6,4 ± 2,2)×10−11 год−1
  16. Verbiest J. P. W., Bailes M., van Straten W., Hobbs G. B., Edwards R. T., Manchester R. N., Bhat N. D. R., Sarkissian J. M., Jacoby B. A., Kulkarni S. R.
    Precision Timing of PSR J0437−4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational Constant (англ.) // The Astrophysical Journal. — IOP Publishing, 2008. — 20 May (vol. 679, no. 1). — P. 675—680. — ISSN 0004-637X. — doi:10.1086/529576. Результат: |
    Ġ
    /
    G
    | ≤ 2,3 × 10−11 год−1
  17. Взрыв звезд доказал неизменность Ньютоновской гравитации в космическом времени
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: