Космическая пыль нанесла удар по теории о начале Вселенной


Пыль земного происхождения

Вулканическая пыль

Вулканическая пыль

В основном она состоит из частиц почвы, поднимающихся вверх под действием ветра. При извержении вулканов часто наблюдаются мощные пылевые облака. Над большими городами висят целые «пылевые шапки», достигающие высоты в 2-3 км. Число пылинок в одном куб. см воздуха в городах достигает 100 тысяч штук, в то время как в чистом горном воздухе их содержится всего несколько сотен. Однако пыль земного происхождения поднимается на сравнительно небольшие высоты – до 10 км. Вулканическая пыль может достигать высоты 40-50 км.

Зёрна звездной пыли в Мурчисонском метеорите оказались гораздо старше Солнечной системы

Небольшой фрагмент Мурчисонского метеорита

Рис. 1.

Небольшой фрагмент Мурчисонского метеорита весом 22 грамма. Фото с сайта meteorlab.com

Зерна звездной пыли, встречающиеся в составе метеоритов, — единственное доступное для прямого изучения материальное свидетельство раннего этапа развития нашей Галактики. Из такой пыли, заполнявшей межзвездную среду, около 4,6 млрд лет назад сформировалась Солнечная система. Результаты недавнего исследования зерен пыли, выделенных из Мурчисонского метеорита, упавшего в 1969 году в Австралии, показали, что возраст наиболее крупных из них составляет более 5 млрд лет. Это самый древний твердый материал, когда-либо попадавший в руки ученых. Образование же самой пыли происходило во время взрывов сверхновых и гибели крупных звезд, родившихся в период так называемого «звездного бэби-бума» — усиленного звездообразования, имевшего место около 7 млрд лет назад.

Материалом для хондритов — самого распространенного класса метеоритов — послужила пыль протопланетного облака, окружавшего Солнце на ранних стадиях формирования Солнечной системы. Учитывая, что возраст Солнца составляет примерно 4,6 миллиарда лет, а Земли — 4,5 миллиарда лет, возраст большинства хондритов как раз находится где-то в районе этих значений.

Некоторые хондриты, помимо протопланетной пыли, включают крошечные твердые частицы межзвездного вещества — звездной пыли, которая содержалась в межзвездном газе еще до образования газопылевого облака, из которого позже образовалось Солнце и все планеты Солнечной системы.

Считается, что звездная пыль формируется в оболочках красных гигантов — не слишком тяжелых звезд (с массами ~0,5–8 масс Солнца), находящихся на заключительных стадиях звездной эволюции. Когда в ядре такой звезды остаются только углерод и кислород, ее массы уже не хватает, чтобы «сжигать» эти элементы (см. Звездный нуклеосинтез), и термоядерные реакции происходят уже во внешних слоях. Всё это сопровождается пульсациями поверхности звезды и сильной потерей вещества за счет звездного ветра (из-за него такие звезды теряют 50–70% своей массы). Из-за этого «выдувания» вещества из красного гиганта вокруг него образуется околозвездная оболочка, температура в которой снижается по мере удаления от звезды. На внешней границе околозвездной оболочки тугоплавкие элементы (Fe, Si, Mg, С) конденсируются из газовой фазы, формируя те самые пылевые зерна.

На диаграмме Герцшпрунга — Рассела звезды на этой стадии своей жизни помещены в асимптотическую ветвь гигантов, а саму стадию так и называют: стадия АВГ. После нее звезда окончательно сбрасывает свои внешние слои, которые вместе с околозвездной оболочкой становятся протопланетарной туманностью, постепенно превращаясь в планетарную туманность. А вместо гиганта остается его ядро — белый карлик, который еще долго будет остывать и медленно краснеть. Остывшие частички звездной пыли разлетаются по межзвездному пространству — небольшая часть такой пыли в свое время попала в район образования Солнечной системы.

Эти досолнечные зерна — единственные материальные свидетельства периода, предшествовавшего Солнечной системе, доступные для прямого анализа. Важно, что звездная пыль сохраняется в первичных (или, как их еще называют, примитивных) метеоритах практически в неизменном виде.

Досолнечные зерна обычно составляют не более 0,1% массы метеоритов. Они идентифицируются по аномальным изотопным значениям ряда элементов — неона, ксенона, гелия, кремния, углерода, азота, кальция, — не свойственным веществу Солнечной системы.

Зерна представлены наиболее тугоплавкими минералами — алмазом и карбидом кремния, в меньшей степени — графитом (в том числе графеном), карбидом титана, нитридом кремния, корундом, шпинелью и хибонитом. Это самые высокотемпературные минералы в составе метеоритов. Их кристаллическая структура формировалась в процессе термической конденсации медленно остывающего вещества в расширяющихся оболочках красных гигантов.

В лабораторных условиях компоненты звездной пыли выделяют из нерастворимого осадка, образующегося после растворения большей части минеральной массы метеорита в концентрированной кислоте.

Впервые достоверно обнаружить частицы звездной пыли в метеоритах удалось в 1987 году (R. S. Lewis et al., 1987. Interstellar diamonds in meteorites), после того, как был разработан аналитический метод масс-спектрометрии вторичных ионов (SIMS —Secondary-Ion Mass Spectrometry) — самый чувствительный метод анализа поверхностей, способный обнаружить присутствие элемента на уровне миллиардных долей. С помощью этого метода ученые получили возможность изучать химический состав и измерять содержания изотопов в досолнечных зернах микронного размера. Для изучения структуры зерен любого размера вполне подходит электронная микроскопия, а вот их достоверное датирование представляет проблему.

Первая попытка датировать звездную пыль из Мурчисонского метеорита по избытку изотопа 21Ne была предпринята в 1988 году (T. Ming, E. Anders, 1988. Interstellar silicon carbide: How much older than the solar system?). Тогда исследователи получили значения от 10 до 100 млн лет до образования Солнечной системы, и сами же в выводах написали о том, что это, скорее всего ошибка, и такой молодой пыль быть не может. Позже это объяснили тем, что анализировались агрегаты зерен, а не отдельные досолнечные зерна.

Первые успешные попытки определения возраста индивидуальных зерен карбида кремния из Мурчисонского метеорита были произведены в 2009 году двумя независимыми методами: по литию (было проанализировано 8 зерен) и по гелию/неону (22 зерна). Срок пребывания зерен в межзвездном пространстве по литию составил от 40 млн до 1 млрд лет (F. Gyngard et al., 2009. Interstellar exposure ages of large presolar SiC grains from the Murchison meteorite), а по гелию/неону — от 3 млн до 1,1 млрд лет (P. R. Heck et al., 2009. Interstellar residence times of presolar SiC dust grains from the Murchison carbonaceous meteorite). При этом авторы обоих исследований отмечали неоднозначность полученных значений возраста и сложность интерпретации такого их большого разброса.

В новой работе международная группа ученых из США, Швейцарии и Австралии под руководством Филиппа Хека (Philipp R. Heck), астрохимика из Чикагского университета, выполнила датирование 40 крупных досолнечных зерен карбида кремния, извлеченных из фрагментов Мурчисонского метеорита. По сравнению с предыдущими исследованиями, авторы внесли в алгоритм расчета возраста ряд дополнительных поправок. Результаты опубликованы недавно в журнале Proceedings of the National Academy of Sciences

.

Для исследования авторы использовали зерна карбида кремния, так как размер досолнечных зерен алмазов составляет всего несколько нанометров и из-за этого их очень трудно анализировать. Большинство зерен карбида кремния имеют размер около одного микрона, но некоторые достигают 10 и более микрон. Такие зерна исследователи в шутку называют булыжниками. Самое крупное досолнечное зерно карбида кремния, обнаруженное в Мурчисонском метеорите, получило название Bonanza (англ.

процветание, удача). Его размер составляет 30 микрон. Как минимум 12 из проанализированных зерен, по мнению авторов, ранее были частями более крупных агрегатов, образовавшихся в межзвездной среде (рис. 2).

Для определения возраста зерен звездной пыли, извлеченной из Мурчисонского метеорита, авторы решили использовать так называемый метод датирования по времени поверхностного воздействия (по возрасту экспозиции), выбрав в качестве таймеров (индикаторов времени воздействия) изотопы 3He и 21Ne.

Изотопные подписи 3He и 21Ne для АВГ-звезд хорошо известны (L. Nittler, F. Ciesla, 2020. Astrophysics with extraterrestrial materials). Их авторы и приняли за первичные. В период нахождения зерен пыли в межзвездном пространстве на них действовало космическое излучение, что отразилось в изотопных значениях. По разнице между первичными и нынешними значениями можно судить о времени, проведенном пылевыми зернами в космосе, а также о том, когда они образовались (добавив 4,5–4,6 млрд лет, которые они потом провели в теле метеорита).

С помощью масс-спектрометрического анализа (наноразмерной масс-спектрометрии вторичных ионов — NanoSIMS) авторы анализировали в зернах количество космогенных нуклидов гелия и неона, образующихся при реакциях распада под действием галактических космических лучей — протонов и альфа-частиц, движущихся с высокими энергиями в космическом пространстве. Изотопы He и Ne анализировались при помощи масс-спектрометрии благородных газов.

Для оценки скорости накопления космогенных нуклидов в досолнечных зернах ученые использовали модель из статьи R. Trappitsch, I. Leya, 2020. Production and recoil loss of cosmogenic nuclides in presolar grains, основанную на данных, собранных на границе гелиосферы космическим зондом «Вояджер-1». При этом они добавили в модельные данные поправку, учитывающую возможное воздействие на досолнечные зерна потока частиц от раннего активного Солнца.

Также ученые делали поправку на размер, учитывая, что многие зерна в период облучения находились в составе более крупных агрегатов, которые потом разрушились, поэтому не вся их поверхность была подвергнута максимальному облучению. Большинство современных теоретических моделей определяют время жизни межзвездных зерен до разрушения в диапазоне от 100 миллионов до 1 миллиарда лет, а размеры пыли, образующейся на АВГ-стадии звезд, — от долей микрона до одного миллиметра (O. C. Jones et al., 2020. The dustiest post-main sequence stars in the Magellanic Clouds).

Авторы определили возраст экспозиции 3He и 21Ne в 30 и 24 зернах соответственно, причем для 18 зерен были получены оба значения. Анализ результатов показал, что метод оценки времени пребывания зерен в межзвездном пространстве по 21Ne значительно достовернее и не требует введения дополнительных поправок (рис. 3).

Рис. 3. Возраст экспозиции досолнечных зерен по 3He и 21Ne

Рис. 3.

Возраст экспозиции досолнечных зерен по 3He и 21Ne, в миллионах лет.
Серые кружочки
— без учета поправок,
красные
— с учетом поправок. Рисунок из обсуждаемой статьи в
PNAS
Полученный возраст зерен колеблется в широком диапазоне от 3,9 ± 1,6 млн лет до 3 ± 2 млрд лет до момента образования Солнечной системы, принятого за 4,6 млрд лет. При этом возраст экспозиции большинства досолнечных зерен составляет около 300 млн лет и лишь три особо крупных зерна дают возраст более 1 млрд лет (рис. 4).

Рис. 4. Гистограмма распределения досолнечных зерен по возрасту

Рис. 4.

Гистограмма распределения досолнечных зерен по возрасту. Рисунок из обсуждаемой статьи в
PNAS
Авторы предполагают, что источниками пыли были АВГ-звезды с начальной массой от 1,6 до 1,9 солнечных масс, образовавшиеся во время второго периода усиленного звездообразования, имевшего место 7 млрд лет назад (первый был 9 млрд лет назад, см. H.J. Rocha-Pinto et al., 1999. An intermittent star formation history in a «normal» disk galaxy: The Milky Way).

По мнению авторов, многочисленные более мелкие звезды имеют слишком длинный эволюционный цикл, чтобы достичь фазы АВГ до образования Солнечной системы, а более редкие массивные звезды вряд ли могли быть источником зерен карбида кремния, для роста которых нужно определенное время пребывания в околозвездном облаке, а давление массивных звезд не позволяет пылевым облакам долго оставаться около материнской звезды.

Полученные авторами данные хорошо согласуются с моделью, основанной на наблюдениях за химическим составом звезд в нашей галактике (M. Noguchi, 2020. The formation of solar-neighbourhood stars in two generations separated by 5 billion years). Она предполагает, что примерно 7 млрд лет назад имел место пик звездообразования, связанный с тем, что потоки холодной материи из гало накапливались в галактическом диске. В период между 4,9 и 4,6 млрд лет звезды, рожденные во время звездного «бэби-бума», достигли АВГ-фазы, когда начали активно продуцировать звездную пыль, небольшая часть из которой была захвачена телами, формирующимися в молодой Солнечной системе.

Недавно другая группа исследователей во главе с Ольгой Правдивцевой из Университета Вашингтона в Сент-Лиусе сообщила об обнаружении досолнечных зерен в метеорите Альенде (O. Pravdivtseva et al., 2020. Evidence of presolar SiC in the Allende Curious Marie calcium–aluminium-rich inclusion). Этот крупнейший найденный на Земле углистый метеорит весом около 5 тонн упал все в том же 1969 году в Мексике.

В нем есть многочисленные крупные тугоплавкие включения, богатые кальцием и алюминием (см. Ca–Al-rich inclusion), которые считаются одними из древнейших объектов, сформировавшихся в Солнечной системе. Они состоят из первых твердых частиц, сконденсировавшихся из остывающего протопланетного диска. В одном из таких включений, названном «Любопытная Мэри» (Curious Marie) в честь Марии Кюри, и были найдены досолнечные зерна. Проведя масс-спектрометрический анализ 20 граммов вещества из этого включения, авторы сначала выявили в нем изотопные аномалии благородных газов, характерные для досолнечных зерен, а потом и сами зерна, представленные карбидом кремния.

Источник:

Philipp R. Heck, Jennika Greer, Levke Kööp, Reto Trappitsch, Frank Gyngard, Henner Busemann, Colin Maden, Janaína N. Ávila, Andrew M. Davis, Rainer Wieler. Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide //
Proceedings of the National Academy of Sciences
. 2020. DOI: 10.1073/pnas.1904573117.

Владислав Стрекопытов

Происхождение космической пыли

Установлено присутствие пылевых облаков на высоте, значительно превышающей 100 км. Это так называемые «серебристые облака», состоящие из космической пыли.

Серебристые облака

Серебристые облака

Происхождение космической пыли чрезвычайно разнообразно: в неё входят и остатки распавшихся комет, и частицы вещества, выброшенного Солнцем и принесённого к нам силой светового давления.

Естественно, что под действием земного притяжения значительная часть этих космических пылинок медленно оседает на землю. Присутствие такой космической пыли было обнаружено на высоких снеговых вершинах.

Как я искал и нашел космическую пыль

Куда же девается звездная пыль что падает с неба? Никуда! Она с нами

Фото: EAST NEWS

Каждый ДЕНЬ на Землю падает 60 тонн космической пыли. Куда же она девается? Никуда! Она с нами. Она – часть той пыли, что мы смахиваем тряпкой со стола. Она оседает на вашу машину. Она просто падает на почву. Но как же ее найти? Как понять, что эта крупинка – точно космическая? Я взял 5-литровую флягу, срезал верх, да и оставил стоять вертикально на даче. На ДВА года. И сегодня я ее раскурочил. Но перед этим я подумал – как бы обтяпать все еще интереснее?

На той неделе я спустился в овраг. Нашел там выходы песка юрского периода. Ну динозавры все дела. Что юрский – понятно по ископаемым остаткам. Аммониты, белемниты. Геологи среди вас есть? Соврать не дадут. Я копанул, где почище, и набрал этого песка. И я подумал, вот, тут могут быть куски астероида, который убил динозавров! (на самом деле нет).

Метеориты из канистры

Фото: Евгений АРСЮХИН

Дальше я взял очень сильный магнит. Не все метеориты магнитят, но, если что-то магнитит, – это точно метеорит (так считается). На дне канистры скопился тонкий слой пыли. К моему удивлению, несколько довольно крупных частиц магнитилось! За два года я набрал штук 6 магнитных пылинок.

С песком сложнее. Я и так и сяк. Наконец я растворил песок в воде, взболтал, сунул магнит в воду – и его весь облепили магнитные частицы. Я приуныл. Столько метеоритов? Сомнительно. Полез читать литературу. Ничего они не знают. Магнетит в песке. А откуда берется, пишут как-то неясно.

Юрский песок под микроскопом

Фото: Евгений АРСЮХИН

Ладно, дальше я на скорую руку соорудил микроскоп. Это просто: берете фотик, перед объективом располагаете любой другой объектив, но задом наперед. Ловите фокус. Все дрожит, но для экспромта сойдет.

Я сделал снимки и сопоставил с тем, что публикуют наши иностранные товарищи. А надо сказать, на Западе поиски космической пыли – это мания. Один чувак приделал к сливной трубе с крыши магнит, и годами ловит, что дождевая вода сносит с крыши. Другой ходит по пляжу с магнитом. Швед какой-то эти пылинки продает. Культ и срамота, короче. Мы, русские, выше этого, у нас таким не занимаются. Я вот один выискался.

Слева юрский песок. Справа крупинки из канистры

Фото: Евгений АРСЮХИН

Ну что я могу сказать. То, что поймала моя канистра – точно метеориты. А вот в песке чот неуверен. Хотя внешне похожи! Весь песок отделить не удалось. Вы видите это на фото. Черные кристаллы — магнитят. Ну а песчинки вы сами отличить в состоянии, они не магнитят.

Что я дальше буду делать. Во-первых, куплю в пятерочке разных банок с притертыми крышками, потому что это богатство надо где-то хранить. Во-вторых, найду старый школьный микроскоп, валялся где-то. Его малость починить надо, ну, я могу. В-третьих, раскурочу еще юрские глины. Я же набрал юрских черных глин. Дальше не знаю, как выпендриться.

Метеориты

Тунгусский метеорит

Тунгусский метеорит

Кроме такой, медленно оседающей космической пыли, в пределы нашей атмосферы ежедневно врываются сотни миллионов метеоров – то, что мы называем «падающими звёздами». Летя с космической скоростью в сотни километров в секунду, они сгорают от трения о частицы воздуха, не успев долететь до поверхности земли. Продукты их сгорания тоже оседают на землю.

А Вы смотрели: Диапазон масс звезд

Материалы по теме

Тунгусский метеорит

Космическая пыль

Впрочем, среди метеоров есть и исключительно большие экземпляры, долетающие до поверхности земли. Так, известно падение большого Тунгусского метеорита в 5 часов утра 30 июня 1908 года, сопровождавшееся рядом сейсмических явлений, отмеченных даже в Вашингтоне (в 9 тысячах км от места падения) и свидетельствующих о мощности взрыва при падении метеорита. Профессор Кулик, с исключительной смелостью обследовавший место падения метеорита, нашёл чащу бурелома, окружающую место падения в радиусе сотен километров. Метеорита к сожалению, ему найти не удалось. Сотрудник Британского музея Кирпатрик в 1932 году совершил специальную поездку в СССР, но к месту падения метеорита даже не добрался. Впрочем, он подтвердил предположение профессора Кулика, оценившего массу упавшего метеорита в 100-120 тонн.

Облако космической пыли

Интересна гипотеза академика В. И. Вернадского, считавшего возможным падение не метеорита, а огромного облака космической пыли, шедшего с колоссальной скоростью.

Владимир Иванович Вернадский

Свою гипотезу академик Вернадский подтверждал появлением в эти дни большого количества светящихся облаков, двигавшихся на большой высоте со скоростью 300-350 км в час. Этой гипотезой можно было бы объяснить и то, что деревья, окружающие метеоритный кратер, остались стоять, в то время как расположенные далее были повалены взрывной волной.

Помимо Тунгусского метеорита известен ещё целый ряд кратеров метеоритного происхождения. Первым из таких обследованных кратеров можно назвать Аризонский кратер в «Каньоне Дьявола». Интересно, что близ него были найдены не только осколки железного метеорита, но и маленькие алмазы, образовавшиеся из углерода от большой температуры и давления при падении и взрыве метеорита. Кроме указанных кратеров, свидетельствующих о падении огромных метеоритов весом в десятки тонн, существуют ещё и более мелкие кратеры: в Австралии, на острове Эзель и ряд других.

А Вы смотрели: Первые звёзды Вселенной взрывались «неправильно»?

Помимо больших метеоритов, ежегодно выпадает довольно много более мелких – весом от 10-12 грамм до 2-3 килограмм.

Если бы Земля не была защищена плотной атмосферой, мы ежесекундно подвергались бы бомбардировке мельчайших космических частиц, несущихся со скоростью, превосходящей скорость пули.

Источник

В галактиках ранней вселенной было мало космической пыли

Космическая пыль – все о космосе

Новые наблюдения с помощью телескопа ALMA показали низкий уровень пыли в девяти ранних галактиках, что должно вызвать пересмотр некоторых астрономических расчетов.

Во Вселенной, как и в привычных нам условиях, со временем накапливается пыль. Источниками пыли в Космосе являются либо ветры старых раздутых звезд, либо взрывы массивных звезд по типу сверхновой. Астрономы ожидали, что появление пыли в галактиках Вселенной потребует времени порядка миллиарда лет или более.

Эти четыре галактики (вставки из данных ALMA), обнаружены в ранней Вселенной, когда ей было только около миллиарда лет. Они имеют сходные размеры, массы и скорости звездообразования. Но, по сравнению с более поздними галактиками, в них намного меньше космической пыли.

ALMA /P. Capak/B. Saxton/ NASA/ESA Hubble

Но в марте Дэраком Уотсоном (Darach Watson) – Университет Копенгагена, Дания – и его коллегами сообщалось, что галактика A1689-zD1 была удивительно пыльной. Нужно учесть, что мы видим ее всего спустя 700 млн.

лет после Большого взрыва (красное смещение 7.5).

Результат дополнил предыдущую работу, в которой на основе данных телескопа ALMA предполагалось, что ранние галактики могли создавать столько же пыли – в соответствии с их массами – как сегодняшние.

Комплекс телескопов ALMA

Питер Кэпэк (Peter Capak) – Калифорнийский технологический институт – и его коллеги использовали сейчас в своей работе телескоп ALMA с другими оптическими и инфракрасными данными.

Команда рассмотрела девять галактик, которые нам видны приблизительно через миллиард лет после Большого взрыва (красные смещения 5-6).

Астрономы обнаружили выбросы пыли только в четырех из них, но во всех девяти галактиках была найдена форма ионизированного углерода [CII].

Как объясняют авторы в Nature от 25 июня и в пресс-релизе NRAO, присутствие всего этого ионизированного углерода предполагает низкий уровень пыли. Углерод обычно соединяется с другими элементами, образуя молекулы.

Поэтому он не может долгое время пребывать в одиночестве.

Но в соединении с несколькими тяжелыми элементами и при минимальном количестве пыли для защиты атомов углерода от ионизирующего воздействия ультрафиолетового излучения молодых звезд в этих галактиках [CII] стал довольно концентрированным.

При этом подразумевается, что в данных галактиках столько же пыли, как в карликовой галактике Малое Магелланово Облако. Это неудивительно, говорит Вероник Буэт (Veronique Buat) – Лаборатория астрофизики Марселя, Франция. Что касается их тяжелых элементов, то карликовые галактики, как правило, менее “развиты” а, следовательно, больше похожи на объекты ранней Вселенной.

Астрономы обычно предполагают особое соотношение между ультрафиолетовой и инфракрасной эмиссиями галактики, указывающее, сколько в ней пыли (инфракрасное излучение исходит от нагретой звездами пыли).

Новый результат подтверждает, что это соотношение справедливо для галактик ранней Вселенной, в которых меньше пыли.

Исходя из этой взаимосвязи, астрономы вычислили скорость рождения звезд, но она может оказаться слишком большой для отдельных ранних галактик.

Скопление галактик Abell 1689 и галактика A1689-ZD1 NASA, ESA и др.

Интересно, что две галактики из рассмотренных командой имеют столько же космической пыли, как и одинокая галактика A1689-ZD1, существовавшая за 300 миллионов лет до них.

То, что считается «умеренным» количеством пыли через миллиард лет после Большого Взрыва, является “интересным” всего через 700 миллионов лет после возникновения Вселенной, говорит Буэт.

Возможно, накопление пыли происходило медленно, но некоторые галактики поторопились и быстро стали пыльными.

Копирование статей запрещено! © 2012-2016 АСТРОновости

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: