Построение орбит небесных тел средствами Python

Мы живём в гелиоцентрической системе. Это означает, что наша планета вращается непосредственно вокруг Солнца. Но так считалось не всегда. До 16 века весь мир был уверен, что Солнце обращается вокруг Земли. Визуально именно такое впечатление и складывается у наблюдателя, находящегося на поверхности планеты.

Такая система получила название геоцентрической, от древнегреческого слова «Гео» — так называли нашу планету в древности. Благодаря лишь пытливым умам учёных прошлого, стало понятно, что это понимание ошибочно. Несмотря на запреты Римской церкви, это мнение стало общепризнанным.

Битва в прошлом за гелиоцентрическую систему

Первым учёным, пытавшимся порушить установившуюся в умах людей мысль о том, что Земля неподвижна, был Аристарх. Он жил в третьем веке нашей эры. Но чётких аргументов в пользу гелиоцентрической системы на то время не было. Поднимался этот вопрос достаточно робко и в пятом веке нашей эры учёным древности Ариабхата.

орбита земли

История исследований

Открытие наличия орбиты

Впервые идею о том, что Земля вращается по орбите вокруг Солнца, так называемый гелиоцентризм, высказал древнегреческий астроном Аристарх Самосский в III в. до н. э.. Он допустил, что Луна не светит самостоятельно, а всего лишь отражает свет Солнца. Наблюдая лунное затмение, пришел к выводам, что диаметр Солнца больше чем Земля в двадцать раз (на самом деле в 109 раз). Получив такие размеры, он решил, что было бы странным, если большее Солнце вращалось вокруг меньшей Земли[4].

Идея гелиоцентризма, высказанная им в работе «О величинах и расстояниях Солнца и Луны», не получила распространения. Одним из контраргументов времен античности было отсутствие параллакса звезд. Ведь если Земля вращается вокруг такого далекого Солнца, то углы между звездами должны значительно смещаться в зависимости от места наблюдателя на орбите. Также теория гелиоцентризма не могла предвидеть точное движение планет. Считалось, что все орбиты имеют форму круга, а это противоречило наблюдениям. В теории геоцентризма подобную проблему решали сферами, которые движутся вокруг сфер (подробности в статье Эпицикл). На протяжении тысячелетий эти аргументы и авторитет Птолемея, Платона и Аристотеля не давал развиться идее гелиоцентризма.

Этот же аргумент приводили и во времена Коперника. Благодаря его работе «О вращении небесных тел» (лат. De revolutionibus orbium coelestium

), изданной в 1534 году теория гелиоцентризма воскресла. В астрономии начала укореняться мысль о наличии орбиты у Земли.

Земля все-таки вертится!

И только лишь в шестнадцатом веке учёный польского происхождения Николай Коперник смог доказать достоверность того, что Земля обращается вокруг Солнца. Несмотря на это, лишь в конце этого же столетия его трудами и книгами заинтересовался Джордано Бруно. Впоследствии за свои высказывания он был сожжён на костре Римской инквизицией. И только лишь Галилео Галилею удалось окончательно доказать и сломить неверный стереотип понимания устройства мира. Таким был трудный и долгий путь обретения истины о вращении нашей планеты.

Законы движения планет Кеплера

Довольно долгое время исследователи считали, что планеты двигаются по определённым круговым орбитам. В созданной греческим ученым Птолемеем во втором веке нашей эры системе мироздания как раз и отражала представления о сложных круговых движениях планет по определенным траекториям.

Готовые работы на аналогичную тему

  • Курсовая работа Орбиты планет 400 руб.
  • Реферат Орбиты планет 230 руб.
  • Контрольная работа Орбиты планет 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Но к началу семнадцатого века схема, где в центре была Земля, а не Солнце перестала удовлетворять ученых Европы.

В результате сначала Николай Коперник доказал, что Земля вращается вокруг Солнца, а не наоборот. А потом и немецкий математик, и астроном Иоганн Кеплер в 1609 году пришёл к выводу, что орбита планет не представляет собою круг.

Первый закон Кеплера.

Все планеты перемещаются в космическом пространстве по определённым орбитам в форме эллипса. При этом в одном из фокусов находится Солнце.

Второй закон Кеплера.

Согласно этому закону радиус-вектор планеты описывает в равные промежутки времени равные площади. В 1619 году Кеплер разработал и третий закон

Третий Закон Кеплера.

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Рассмотрим особенности орбит планет в нашей родной Солнечной системе.

Итак, орбитами планет в системе нашего Солнца называют те пути в пространстве, по которым планеты обращаются вокруг звезды. При этом формы движения планет близки к круговым, а плоскости, в свою очередь, близки к плоскости эклиптики. Исключением являются космические тела, обладающие малой массой.

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

Особенности орбиты Земли

Орбита Земли вокруг Солнца не является правильным кругом. Она имеет конфигурацию эллипса, но не ярко выраженного. Максимально планета удаляется на дистанцию 152 миллиона километров, это явление получило название перигелий.

орбита земли вокруг солнца

Полный период обращения планеты вокруг Солнца составляет 365,25 земных суток, это астрономический год. Годовое перемещение Земли по орбите фиксируют исходя из косвенных проявлений. К ним относят изменение длительности дня и ночи, изменение полуденной высоты, а также смену точек восхода и захода Солнца.

Орбиты меньших внутренних планет

Меркурий, Венера, Земля и Марс входят в группу так называемых меньших внутренних планет или планет земной группы: они небольшие, твердые, состоят из металлов силикатов и находятся ближе всего к Солнцу. У Меркурия одна из самых вытянутых орбит, меньше всего похожих на форму круга. Ее эксцентриситет – числовое выражение отклонения от окружности – составляет 0,205. Орбита Меркурия расположена почти в 58 миллионах километров от Солнца. На плоскости эклиптики она тоже лежит неровно, под углом в 7 градусов.

Планета движется по орбите со скоростью 48 километров в секунду, делая оборот вокруг солнца за 88 суток.

Орбита Венеры очень близка по форме к кругу, в отличие от Меркурия (эксцентриситет равен 0,0068). Наклон к плоскости эклиптики у нее тоже очень небольшой: около 3,4 градусов. Планета обращается со скоростью 35 километров в секунду, делая полный оборот за 225 суток.

Орбита Земли эллиптическая, ее длина – более 930 миллионов километров. Скорость движения планеты по орбите не постоянная: она минимальна в июле и максимальна в феврале.

Марс находится в 55 миллионах километров от Земли и в 400 миллионах километров от Солнца. Ее орбита имеет форму очень выраженного эллипса, но не настолько вытянутого, как у Меркурия, с эксцентриситетом в 0,0934. Она наклонена к плоскости эклиптики под градусом 1,85.

Мы летим сквозь пространство и время

Орбита Земли вокруг Солнца имеет дистанцию более 930 миллионов километров. Это поистине огромное расстояние. Его наша планета преодолевает всего за один год. Это обосновано тем, что скорость Земли по орбите вокруг Солнца достаточно высока и оставляет 107 218 километров в час. Для сравнения, между крайними точками России (восток – запад) около десяти тысяч километров. Фактически, Земля за один час преодолевает расстояние почти в одиннадцать раз большее, чем общая протяжённость России в направлении с востока на запад.

Alpha Centauri

Во время наших прямых трансляций (а транслируем мы космические запуски) у людей часто возникают вопросы вида: «А что такое геостационарная орбита?», «А на какой высоте находится МКС?», «Орбита «Молния»? Это как!?». Мы решили перевести для вас замечательный каталог орбит NASA, а начнём как раз с околоземных орбит!

Высокие орбиты

Когда спутник достигает высоты ровно в 42164 километров от центра Земли (около 36 000 километров от поверхности Земли), он попадает в своеобразное орбитально «яблочко», место, где скорость его вращения вокруг Земли совпадает со скоростью вращения Земли вокруг своей оси. Поскольку эти скорости одинаковы, аппарат «зависает» вдоль одной долготы, хотя и может дрейфовать с севера на юг. Такая высокая орбита называется геосинхронной.

Спутник на круговой геосинхронной орбите непосредственно над экватором (эксцентриситет и наклонение равны нулю) будет иметь геостационарную орбиту, которая не перемещается относительно Земли вообще. Он всегда находится прямо над одним и тем же местом на поверхности Земли.

Геостационарная орбита чрезвычайно важна для мониторинга погоды, поскольку спутники на этой орбите обеспечивают постоянное наблюдение одной и той же области планеты. Когда вы заходите на любимый сайт проверить погоду и смотрите на спутниковые снимки своего родного города, изображение, которое вы видите, пришло от спутника на геостационарной орбите. Каждые несколько минут геостационарные спутники, такие как аппараты Geostationary Operational Environmental Satellite (GOES), отправляют информацию об облаках, водяном паре и ветре, и этот почти постоянный поток информации служит основой для большинства метеорологических наблюдений и прогнозирования.

Спутники на геостационарной орбите вращаются непосредственно над экватором, постоянно находясь над одной и той же областью. Это положение позволяет спутникам наблюдать за погодой и другими явлениями, которые часто меняются. Credit: NASA/Marit Jentoft-Nilsen and Robert Simmon.

Поскольку геостационарные спутники всегда находятся в одном месте, они также могут быть полезны для телефонной, теле- и радиосвязи. Созданные и запущенные NASA и управляемые Национальным управлением океанических и атмосферных исследований (NOAA), спутники GOES обеспечивают связь с поисково-спасательными маяками, которые помогают находить суда и самолеты, терпящие крушение.

Наконец, многие спутники на высокой орбите контролируют солнечную активность. Спутники GOES несут на себе большой набор инструментов для исследования «космической погоды»: они получают изображения Солнца и отслеживают магнитные и радиационные уровни в космосе вокруг аппаратов.

Есть и другие орбитальные «яблочки», расположенные непосредственно за пределами высокой околоземной орбиты — это точки Лагранжа. В точках Лагранжа земное притяжение компенсирует притяжение Солнца. Все, что находится в этих точках, притягивается к Земле и к Солнцу с одинаковой силой. Это такой баланс, в котором нам не нужно тратить топливо, чтобы удерживать орбиту аппарата постоянной.

Из пяти точек Лагранжа в системе Солнце-Земля только последние две, называемые L4 и L5, являются стабильными. Спутник в трех других точках подобен шару, оставленному на вершине крутого холма: любое небольшое возмущение выталкивает спутник из точки Лагранжа, словно мяч, который при малейшем взаимодействии скатится по холму вниз. Спутники в этих трех точках нуждаются в постоянной корректировке, чтобы оставаться сбалансированными. Аппараты в последних двух точках Лагранжа больше похожи на шар в глубокой тарелке: даже если их немного подтолкнуть, они вернутся в точку Лагранжа (в центр тарелки в нашей аналогии).

Точки Лагранжа — это специальные места, где спутник останется неподвижным относительно Земли, пока и спутник и Земля вращаются вокруг Солнца. L1 и L2 расположены выше дневных и ночных сторон Земли соответственно. L3 находится по обратную сторону Солнца, напротив Земли. L4 и L5 — в 60° впереди и позади Земли на одной орбите. Credit: NASA/Robert Simmon.

Ближайшие к Земле точки Лагранжа находятся примерно в 5 раз дальше, чем Луна. L1 находится между Солнцем и Землей и всегда обращена к дневной стороне Земли. L2 находится напротив солнца, всегда на ночной стороне. Credit: NASA/Robert Simmon.

Первая точка Лагранжа расположена между Землей и Солнцем, что позволяет спутникам в этой точке постоянного наблюдать за нашей звездой. Солнечная и гелиосферная обсерватория (SOHO), спутник НАСА и Европейского космического агентства, которому поручено контролировать Солнце, обращается вокруг первой точки Лагранжа примерно в 1,5 миллионах километров от Земли.

Вторая точка Лагранжа находится примерно на том же расстоянии от Земли, но расположена за Землей относительно Солнца — Земля всегда находится между второй точкой Лагранжа и звездой. Поскольку Солнце и Земля находятся на одной линии, спутники в этом месте нуждаются только в одном тепловом щите, который будет блокировать тепло и свет, исходящие от Солнца и Земли. Это хорошее место для космических телескопов, в том числе для будущего космического телескопа им. Джеймса Уэбба (запуск ожидается в 2021 году). В этой же точке, например, работал зонд WMAP (Wilkinson Microwave Anisotropy Probe), исследовавший реликтовое излучение Вселенной с 2001 по 2009 год — именно его наблюдения помогли значительно продвинуться в теории тёмной материи и тёмной энергии.

Третья точка Лагранжа находится по другую сторону Солнца от Земли, так что Солнце всегда находится между ней и Землей. Без специальных ретрансляторов спутник в таком положении не сможет общаться с Землей — Солнце заблокирует прямые сигналы.

Крайне стабильные четвертая и пятая точки Лагранжа находятся на орбите Земли вокруг Солнца, на 60 градусов впереди и позади нашей планеты. Двойная солнечная обсерватория (STEREO) на своём пути к противоположным сторонам Солнца проходили именно четвертую и пятую точки Лагранжа — это позволяет создавать стереоскопические изображения звезды.

5 июля 2009 года два аппарата Двойной солнечной обсерватории (STEREO) на пути к точкам L4 и L5 сделали эти снимки солнечного пятна 1024. Виды Солнца в 60 градусов позади (на изображении — слева) и впереди (справа) от орбиты Земли показывают области поверхности Солнца, которые иначе были бы скрыты от зрения. Credit: NASA/STEREO.

Средние орбиты

Ближе к Земле спутники начинают вращаться быстрее. Стоит отметить две средние околоземные орбиты: полусинхронная орбита и Молния.

Полусинхронная орбита представляет собой околокруговую орбиту (с низким эксцентриситетом) на высоте 26 560 километров от центра Земли (около 20 200 км над поверхностью). Один полный оборот вокруг планеты на такой орбите происходит за 12 часов. Однако пока полусинхронный спутник вращается, Земля под ним тоже движется вокруг своей оси. Ежедневно такой аппарат пролетает над одними и теми же двумя точками на экваторе. Эта орбита является постоянной и очень предсказуемой. Именно она используется спутниками глобальной системы позиционирования (GPS).

Вторая известная средняя орбита Земли — орбита Молнии. Впервые она была использована Советским Союзом, а её особенность помогает наблюдать за высокими широтами. Геостационарная орбита полезна и удобна для постоянного наблюдения, но спутники на геостационарной орбите «подвешены» над экватором, поэтому они плохо работают в отдаленных северных или южных районах, которые всегда находятся на краю обзора геостационарных аппаратов. Орбита Молния является удобной альтернативой.

Орбита Молния сочетает в себе высокое наклонение (63,4°) с высоким эксцентриситетом (0,722), чтобы максимизировать время наблюдений в высоких широтах. Каждый оборот длится 12 часов, поэтому медленная, высотная часть орбиты повторяется в одном и том же месте каждую день и ночь. В настоящее время этот тип орбиты используют российские спутники связи и аппараты Sirius (Адаптированное цитирование книги «Основы космических систем» Винсента Л. Писакана, 2005 г.)

У Молнии высокий эксцентриситет: спутник движется по очень вытянутому эллипсу, ближе к одному из краёв которого находится Земля. Поскольку такой аппарат ускоряется силой притяжения нашей планеты, спутник движется очень быстро, когда он приближается к Земле. Когда он отдаляется, его скорость замедляется, поэтому он проводит больше времени на вершине своей орбиты, наиболее удаленной от Земли. Один полный оборот на такой орбите занимает 12 часов, но две трети этого времени аппарат видит лишь одно полушарие. Как и в случае полусинхронной орбиты, аппарат на Молнии проходит один и тот же путь каждые 12 часов. Это может быть полезно для связи на крайнем севере или юге.

Низкая околоземная орбита

Большинство научных спутников и множество метеорологических спутников находятся на почти круговой низкой околоземной орбите. Наклонение спутника зависит от того, с какой целью он запускается. Спутник TRMM, например, был запущен в 1997 году для мониторинга осадков в тропиках. Поэтому он имел относительно низкое наклонение (35 градусов) и оставался вблизи экватора, исправно выполняя свою миссию вплоть до 2020 года.

Низкое наклонение орбиты TRMM (всего 35° от экватора) позволяло его инструментам концентрироваться на тропиках. На этом изображении показана половина наблюдений, которые TRMM производил за один день. Credit: NASA/TRMM.

Многие спутники программы NASA по наблюдению за Землёй имеют почти полярную орбиту. На этой сильно наклоненной орбите спутник перемещается вокруг Земли от полюса к полюсу, совершая один оборот примерно за 99 минут. На одной половине орбиты спутник наблюдает дневную сторону Земли. На полюсе он пересекает ночную сторону.

Пока спутники летят наверху, Земля под ними тоже поворачивается. К тому времени, когда спутник снова перейдет в «дневную» область, он уже будет находиться над районом, прилегающим к той области, которую он наблюдал во время прошлого оборота. В течение суток полярные орбитальные спутники успевают рассмотреть большую часть Земли дважды: один раз при дневном свете и один раз в темноте.

Аппараты на солнечной синхронной орбите пересекают экватор примерно в одно и то же местное время каждый день (и ночь). Эта орбита позволяет проводить последовательные научные наблюдения, при этом угол между Солнцем и поверхностью Земли остается относительно постоянным. На этих иллюстрациях показаны 3 последовательные оборота солнечно-синхронного спутника с экваториальным временем пересечения 13:30. Последняя орбита спутника обозначена темно-красной линией, а предыдущие — более светлыми. Credit: NASA/Robert Simmon.

В то время как «яблочко» геосинхронных спутников находится над экватором (это место позволяет им оставаться в одной и той же позиции над Землёй), у полярно-орбитальных спутников есть своё «яблочко», которое позволяет наблюдать одну и ту же область. Эта орбита синхронизирована по Солнцу, что означает, что всякий раз, когда спутник пересекает экватор, локальное солнечное время на земле всегда одно и то же. Например, для спутника Terra это всегда около 10:30 утра, в это время спутник пересекает экватор в Бразилии. Когда спутник сделает полный оборот вокруг Земли через 99 минут, он пересечёт экватор в Эквадоре или Колумбии, примерно в те же 10:30 по местному времени.

Солнечно-синхронная орбита крайне важна для науки, потому что она удерживает угол падения солнечного света на поверхность Земли более-менее постоянным, хотя угол и будет меняться вместе со сменой времён года. Это постоянство означает, что ученые в течение нескольких лет могут сравнивать изображения одной и той же области в одно и то же время года, не беспокоясь слишком сильно об изменениях углов теней и освещения, которые могли бы создавать иллюзии изменений. Без солнечно-синхронной орбиты было бы очень сложно отслеживать изменения с течением времени. Было бы просто невозможно собрать информацию, необходимую для изучения изменений климата.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

25

Перейти к обсуждению

Немного о плоскости эклиптики Земли и других планет

Плоскость эклиптики – это плоскость орбиты Земли. Подобное словосочетание вы будете встречать довольно часто, для большинства это не совсем понятная фраза. На самом деле, чтобы понять, необходимо вспомнить, что Земля, как и другие объекты Солнечной системы, обладает углом наклона. К примеру, у Плутона (ранее он считался планетой) самый большой угол — 120 градусов.

У Земли он составляет около 23.5 градуса.

плоскость орбиты земли

Как известно, в общем случае любой спутник движется по эллиптической орбите. Эллипсом является геометрическое место точек, для которых сумма расстояний до двух заданных фокусов F1 и F2 есть величина постоянная, равная длине большой оси эллипса:

2а = r1 + r2 . (1.1)

Фокусы F1 и F2 лежат на большой оси эллипса (рисунок 1.2,а) по обе стороны от центра на расстоянии

(1.2)

Форма эллипса характеризуется эксцентриситетом е = с/а . Для эллипса е < 1. При эксцентриситете, равном нулю, эллипс превращается в окружность. Расстояние от точки М на эллипсе до первого фокуса F1 выражается формулой:

r1 = МF1 = а − е х . (1.3)

Орбита ИСЗ (рисунок 1.2,б) без возмущений представляет собой эллипс, один из фокусов которого совпадает с центром масс Земли. Наиболее близко расположенная точка пересечения фокальной оси с эллиптической орбитой называется перигеем (П), а наиболее удаленная – апогеем (А).

Положение ИСЗ на орбите относительно Земли может быть определено шестью кеплеровыми элементами, два из которых характеризуют размеры и форму орбиты, три – ориентацию орбиты и направление движения ИСЗ, а шестой – положение спутника на орбите. Этими шестью элементами являются:

 большая полуось а,

 эксцентриситет e,

 наклонение i,

 долгота восходящего узла Ω,

 аргумент перицентра ω,

 средняя аномалия Mo. (время прохождения спутника через перигей)

На рисунке изображена эллиптическая орбита ИСЗ в абсолютной геоцентрической (экваториальной) системе координат. Начало системы совмещено с центром Земли. Ось ОZ направлена вдоль оси вращения Земли в сторону северного полюса. Ось ОХ лежит в экваториальной плоскости и направлена в точку весеннего равноденствия. Ось ОУ дополняет декартову правую систему координат

Большая полуось орбиты а вычисляется по формуле (1.1) и характеризует среднее удаление движущегося ИСЗ от центра Земли. Большая ось орбиты проходит через центр Земли и соединяет точки апогея и перигея.

Эксцентриситет орбиты е – отношение расстояния между фокусами к большой оси, е = с/а характеризует форму орбиты. Для орбит ИСЗ е ≤ 1. Эксцентриситет орбит спутников радиосвязи, как правило, не превышает 0,5. При е = 0 орбита является круговой, для которой высоты апогея и перигея равны. По круговой орбите ИСЗ движется с постоянной скоростью. При движении по эллиптической орбите скорость движения спутника изменяется, достигая максимума в области перигея и минимума – в области апогея.

Можно разделить внешний вид орбиты на пять групп:

е=0 — окружность

0< е <1 — эллипс

е =1 — парабола

1< е < ∞ — гипербола

е =∞ — прямая (вырожденный случай)

Наклонение орбиты i – двугранный угол между плоскостью орбиты и плоскостью экватора (линия пересечения плоскости эклиптики (экватора для ИСЗ) (Наклон оси вращения Земли около 23.44°) с плоскостью орбиты спутника), отсчитываемый от плоскости экватора против хода часовой стрелки для наблюдателя, находящегося в точке восходящего узла (ВУ). Восходящим узлом называют точку, в которой ИСЗ переходит из южного полушария в северное. Противоположная точка называется нисходящим узлом. Наклонение измеряется в угловых градусах, минутах и секундах.

По наклонению орбиты делятся на экваториальные (i ≈ 0°), наклонные ( 0° ≤ i ≤ 90°) и полярные (i ≈ 90°).

Если 0

Если 90°

В применении к Солнечной системе, за плоскость отсчёта обычно выбирают плоскость орбиты Земли (плоскость эклиптики). Плоскости орбит других планет Солнечной системы и Луны отклоняются от плоскости эклиптики лишь на несколько градусов.

Для искусственных спутников Земли за плоскость отсчёта обычно выбирают плоскость экватора Земли.

Для спутников других планет Солнечной системы за плоскость отсчёта обычно выбирают плоскость экватора соответствующей планеты.

Для экзопланет и двойных звёзд за плоскость отсчёта принимают картинную плоскость.

Зная наклонение двух орбит к одной плоскости отсчёта и долготы их восходящих узлов, можно вычислить угол между плоскостями этих двух орбит — их взаимное наклонение, по формуле косинуса угла.

Долгота восходящего узла орбиты Ω характеризует поворот плоскости наклонной или полярной орбит вокруг оси (ОZ) вращения Земли. Долгота восходящего узла – это угол, расположенный в экваториальной области и отсчитываемый от направления на точку весеннего равноденствия (ось ОХ) до линии узлов.

Долгота восходящего узла— один из основных элементов орбиты, используемый для математического описания ориентации плоскости орбиты относительно базовой плоскости. Определяет угол в базовой плоскости, образуемый между базовым направлением на нулевую точку и направлением на точку восходящего узла орбиты, в которой орбита пересекает базовую плоскость в направлении с юга на север. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д. Нулевая точка — Первая точка Овна (точка весеннего равноденствия). Угол измеряется от направления на нулевую точку против часовой стрелки.

Аргумент перигея ω характеризует ориентацию большой оси эллипса в плоскости орбиты. Аргумент перигея оценивается как угловое расстояние от восходящего узла (ВУ) до перигея (П), отсчитываемое в плоскости орбиты в направлении движения ИСЗ.

Аргумент перицентра— определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°

Форма орбиты: как это может влиять на климат

Вернёмся непосредственно к самой орбите Земли и её особенностям. Фактически, круговая орбита Земли (наличие эллипсоидальной формы незначительно) обеспечивает отсутствие сильного отдаления или приближения к нашему Солнцу. Благодаря этому получение тепла от него практически одинаково.

круговая орбита земли

Точно так же, по геометрической прогрессии, увеличивается тепло при приближении. Поэтому достаточно наличия эллипса орбиты Земли с соотношением 1 к 2, чтобы условия на планете стали малопригодны для жизни на планете в том виде, который мы имеем сейчас.

К примеру, дистанция от Солнца до Марса в 1.52 раза больше, чем до Земли. Этого расстояния хватает, чтобы в летнее время температура этой планеты была максимум +20°С и минимум -90°С, а в зимние ночи опускалась до -125 °С. Орбита Земли имеет эллипсоидную форму с соотношением 1 к 1,034, поэтому температурные изменения на планете не такие резкие.

Параметры Низкой околоземной орбиты

Минимальная высота (перигее) – 193 км.

Максимальная высота (апогее) – 220 км.

Наклон – 51,6 градусов.

Оборот вокруг Земли с первой космической скоростью – около 88,3 минуты.

При вычислении траектории и высоты космического аппарата, Российские и Американские баллисты пользуются разными методами. Российские указывают высоту над эллипсоидом, в то время как американские баллисты над сферой. Таким образом, получается небольшая разница в показаниях, примерное смещение апогея и перигея на 20 км.

Благодаря земному вращению, космические ракеты могут выводить большее количество грузов, затрачивая меньшее количество энергии. Грузоподъёмность зависит от наклона к околоземной орбите и плоскости экватора. Наиболее благоприятные условия для грузового ракетоносителя считается, если предполагаемая для космического аппарата низкая околоземная орбита наклонена ближе к экватору. Космодром, который совпадает с такой широтой, наиболее энергоемкий для таких запусков. Космодромам, которые находятся дальше от экваториальной зоны, не выгодно запускать свои ракеты-носители в связи с большими энегрозатратами. Пример такому расположению стал Российский космодром Байконур в Казахстане с широтой в 46 градусов из-за ограничения в 48,5 градусов для НОО и падения останков частей ракеты-носителей. Космодром Байконур в основном использует для запусков наклонение в 51,6 градуса.

Все ли мы знаем о жизни в космосе?

В бескрайних просторах космоса существует бесчисленное количество планет. Среди них обнаружены небесные тела, орбиты которых достаточно вытянуты.

скорость земли по орбите

Формирование Солнечной системы

Собранные за много лет знания дают возможность ученым лишь строить предположения о том, как сформировалась Солнечная система. Существует общепризнанная небулярная теория, согласно которой Солнце и планеты возникли из молекулярного облака. Плотное облако при этом подверглось резкому сжатию под действием гравитации.

Предполагаемый возраст Солнечной системы – 4,6 миллиардов лет. В первую очередь, в центральной части газопылевого облака образовалось Солнце. Вокруг него, из вещества, оказавшегося за пределами центра, сформировался протопланетный диск. Позже из него возникли планеты, спутники и прочие космические тела.

Само же облако, по предположению ученых, могло образоваться после взрыва сверхновой звезды. Ее масса, должно быть, соответствовала массе 30 Солнц. Сверхновая звезда заполучила название Коатликуэ. Впоследствии Солнечная система эволюционировала.

Небулярная гипотеза появилась в 18 веке. Ее выдвинули ученые Сведенборг и Лаплас вместе с философом Кантом. По сегодняшний день данная теория проверяется и улучшается на основании новых данных.

В начале 21 века ученые резко изменили мнение о том, как выглядела Солнечная система в начале своего существования. Прежде считалось, что за миллиарды лет ничего не изменилось. Однако, согласно новым представлениям, сейчас она стала более громоздкой.

Интересно: Может Земля замедлить вращение или остановиться? Описание, схема, видео

Из чего состоит Солнечная система?

В современном представлении Солнечная система включает центральную звезду, а также естественные космические тела, которые вращаются вокруг нее. Масса системы – 1,0014 M☉(специальная единица измерения, использующаяся в астрономии).

Большую часть данной массы составляет Солнце, все остальное – планеты системы. В нее входит восемь планет. При этом Солнечная система состоит из внутренней и внешней области. Внутренняя область представлена близлежащими планетами: Меркурием, Венерой, Землей и Марсом. Внешнюю область образуют Юпитер, Сатурн, Уран и Нептун.

По каким орбитам движутся астероиды

Доказательством того что наша Солнечная система произошла из газово-пылевого облака служит факт, что все планеты нашей системы движутся в одном направлении по орбитам вокруг Солнца. Самое удивительное, что и тысячи открытых малых планет, астероидов движутся в том же направлении. Большинство астероидов находятся между орбитами Марса и Юпитера. Они имеют похожие орбиты с небольшим эксцентриситетом (попросту говоря не слишком вытянутые) и углом наклона к плоскости эклиптики. Они движутся в пределах большого, похожего на бублик, кольца.

В этом кольце движутся и самые крупные астероиды: Церера, Паллада, Веста (единственный астероид видимый невооружённым глазом как звёздочка шестой величины), Евфросина, Гигия и другие. Поэтому эти самые крупные астероиды не могут угрожать нашей Земле столкновением. Чем дальше от этого пояса астероидов тем меньше их количество. Например Церера и Паллада движутся друг за другом почти по одной орбите и только Паллада отстаёт на 35 градусов дуги. Наблюдается закономерность: чем дальше астероиды от Солнца, тем больше их орбиты похожи на круговую. Когда начали открывать астероиды, никому и в голову не приходило, что есть астероиды, орбиты которых не лежат между орбитами Марса и Юпитера. Только в 1873 году был открыт астероид за номером 132, орбита которого лежала внутри орбиты Марса. А в 1898 году, был открыт астероид № 433 Эрос. Это маленький астероид, поперечником 25 километров. Его открыли потому, что он близко подошёл к Земле. Своим перигелием орбита Эроса почти касается орбиты Земли. Дальше больше. В 1911 году открыт Астероид №719 Альберт, который мог подходить к Земле почти также как Эрос. В 1918 г. №887 Алинда, В 1924 г. №1036 Ганимед, в 1927г. №1627 Ивар, перигелий которого подходил к Земле ближе, чем Эрос, а афелий был расположен в середине кольца астероидов. Первый из открытых астероидов, который пересекал орбиту Земли, был Аполлон. Он проникал не только внутрь орбиты Земли, но и внутрь орбиты Венеры. Рекорд побил астероид Гермес, который прошёл на расстоянии 800 000 км от поверхности Земли. Всего в два раза дальше Луны. Когда его открыли, он перемещался по небу со с угловой скоростью 5 градусов в час. Это было в 1937 году. В наши дни астероид Гермес утерян из-за его маленьких размеров. Но если даже такой маленький астероид столкнётся с Землёй, мало не покажется. А вот астероид открытый в 1949г., получил имя Икар за то, что ближе других подлетает к Солнцу. Всего 30 миллионов километров отделяло его от нашей звезды. А это значит он проникал внутрь орбиты Меркурия.

Кеплеровы орбиты[ | ]

Долгое время считалось, что планеты должны иметь круговую орбиту. После долгих и безуспешных попыток подобрать круговую орбиту для Марса, Кеплер отверг данное утверждение и, впоследствии, используя данные измерений, сделанных Тихо Браге, сформулировал три закона (см. Законы Кеплера), описывающих орбитальное движение тел.

Кеплеровыми элементами орбиты являются:

  • фокальный параметр p {\displaystyle p} , большая полуось a {\displaystyle a} , радиус перицентра, радиус апоцентра — определяют размер орбиты,
  • эксцентриситет ( e {\displaystyle e} ) — определяет форму орбиты,
  • наклонение орбиты ( i {\displaystyle i} ),
  • долгота восходящего узла ( Ω {\displaystyle \Omega } ) — определяет положение плоскости орбиты небесного тела в пространстве,
  • аргумент перицентра ( ω {\displaystyle \omega } ) — задаёт ориентацию аппарата в плоскости орбиты (часто задают направление на перицентр),
  • момент прохождения небесного тела через перицентр ( T 0 {\displaystyle T_{0}} ) — задаёт привязку по времени.

Эти элементы однозначно определяют орбиту независимо от её формы (эллиптической, параболической или гиперболической). Основной координатной плоскостью может быть плоскость эклиптики, плоскость галактики, плоскость земного экватора и т. д. Тогда элементы орбиты задаются относительно выбранной плоскости.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: