История астрономии. Представления древних астрономов о вселенной.


Астроном – это…

Людей всегда интересовало, что скрывается высоко за облаками и как же все устроено там, в межзвездном пространстве. Астроном – это человек, который призван не только задавать эти вопросы, но и отвечать на них. Это специалист в астрономии – науке о Вселенной, всех процессах и взаимосвязях, которые в ней происходят. А для этого необходимо обладать терпением, наблюдательностью, а главное — значительными знаниями в различных областях наук. Поэтому астроном – это прежде всего ученый.

астроном это

Профессиональные астрономы должны обладать знаниями по физике, математике, а иногда и химии. Они работают в исследовательских центрах и обсерваториях, анализируя информацию о космических телах, их движениях и других явлениях, которую получают из собственных наблюдений, данных спутников, используя при этом различные приборы. Профессия эта включает в себя более узкие специализации, например, планетолог, астрофизик, астрохимик, космолог.

Десять крупнейших событий 2020 года в физике и астрономии

Гравитационные волны от слияния нейтронных звёзд

Столкновение нейтронных звёзд. Иллюстрация: NSF/LIGO/Sonoma State University/A. Simonnet.

Завершённый туннель ускорителя. Фото: European XFEL / Heiner Muller-Elsner.

Компактный нейтринный детектор, который сжимает в руках физик Бьёрн Шольц, по форме и размеру напоминает обычную бутылку. Фото: Juan Collar/uchicago.edu.

Планеты системы TRAPPIST-1 в сравнении с планетами Солнечной системы. Иллюстрация: NASA/JPL-Caltech.

Снимок колец Сатурна, полученный с помощью аппарата «Кассини». Фото: Space Science Institute/JPL-Caltech/NASA.

Самым значимым открытием 2020 года стала первая в истории регистрация гравитационных волн от слияния двух нейтронных звёзд. Астрономам впервые удалось одновременно зафиксировать возникшие при слиянии гамма-вспышки, а затем найти и исследовать место, где произошла космическая катастрофа, — в 100 миллионах световых лет от Земли.

Обнаружили гравитационные волны 17 августа гравитационно-волновые детекторы LIGO (США) и Virgo (Франция, Италия), а спустя пару секунд космические обсерватории «Интеграл» (ЕКА) и «Ферми» (НАСА) зафиксировали короткие гамма-вспышки. К поиску источника сигнала подключились наземные и космические обсерватории, которые затем в течение нескольких десятков дней следили за постепенно гаснущим остатком «взрыва». В работе приняли участие и российские исследователи из ИКИ РАН, ГАИШ МГУ и ФТИ им. А. Ф. Иоффе.

Это открытие имеет отношение сразу к нескольким проблемам астрофизики. В первую очередь — к вопросу о происхождении мощных гамма-лучевых всплесков, которые испускают за доли секунды энергии больше, чем Солнце за миллиарды лет.

Астрофизики давно предполагали, что источником всплесков может быть слияние двух нейтронных звёзд, но теперь они получили экспериментальное доказательство справедливости разработанной теории. В результате столкновения звёзд одновременно с гамма-всплеском часть звёздного вещества с большой скоростью выбрасывается в окружающий космос. Это явление, открытое в 2013 году, получило название килоновой. Затем радиоактивные элементы из образовавшегося облака распадаются на стабильные, порождая его излучение. Астрономы обнаружили в облаке большое количество тяжёлых элементов, таких как золото и платина, что позволяет считать слияния звёзд настоящими галактическими фабриками тяжёлых элементов, отсутствовавших в молодой Вселенной.

Квантовый компьютер в 53 кубита

Квантовые компьютеры, с которыми связаны большие ожидания, пока не созданы, но в 2020 году сделаны важные шаги на пути к воплощению этой идеи в жизнь. Квантовые вычислительные устройства работают с кубитами — объектами, хранящими наименьший элемент информации, аналогами бита в обычном компьютере. Количество кубитов определяет возможности квантового компьютера.

В ноябре в журнале «Nature» опубликованы статьи, посвящённые моделированию квантовых систем с помощью квантовых компьютеров из 51 и 53 кубитов. До этого подобные универсальные устройства были ограничены 20 кубитами. Увеличение количества кубитов в 2,5 раза многократно повысило возможности вычислителей. 51-кубитный квантовый компьютер создан под руководством Михаила Лукина, работающего в Российском квантовом центре и Гарвардском университете. 28 июля года такое устройство было представлено на Международной конференции по квантовым технологиям в Москве.

Стабильный металлический водород

В январе физики из Гарварда сообщили, что они впервые в истории получили небольшое количество стабильного металлического водорода. Образец имел размеры 1,5 х 10 мкм. Теоретически существование металлического водорода при больших давлениях было предсказано в 1935 году. В природе такие условия реализуются в недрах звёзд и планет-гигантов. С 1996 года его несколько раз получали ударным сжатием, но существовал водород в таком состоянии очень короткое время.

Для получения стабильного металлического водорода команда из Гарварда использовала установку, где алмазные наковальни развивали давление 495 гигапаскалей, что примерно в пять миллионов раз больше нормального атмосферного давления.

Помимо чисто научной ценности у этого экзотического материала может найтись и практическое применение — он обладает высокотемпературной сверхпроводимостью (в данном случае она наступала при -58оС).

Рентгеновский лазер на свободных электронах начал работу

1 сентября состоялась официальная церемония открытия самого крупного в мире Европейского рентгеновского лазера на свободных электронах XFEL (x-ray free electron laser), в создании которого принимала участие и Россия. На самом деле лазером, то есть источником оптического излучения определённого вида, эта установка не является. В ней рентгеновское излучение, аналогичное по свойствам лазерному, создаёт пучок электронов, разогнанный до скоростей, близких к скорости света. В XFEL для этого используется самый большой в мире сверхпроводящий линейный ускоритель длиной 1,7 км. Ускоренные электроны попадают в ондулятор — устройство, создающее в пространстве периодически изменяющееся магнитное поле. Двигаясь в нём по зигзагообразной траектории, электроны излучают в рентгеновском диапазоне. Новая уникальная установка будет генерировать ультракороткие рентгеновские вспышки с рекордной частотой — 27 000 раз в секунду, а её пиковая яркость ожидается в миллиард раз выше существующих источников рентгеновского излучения.

Более 60 научных коллективов уже подали заявки на проведение экспериментов. С помощью рекордно ярких и очень коротких рентгеновских импульсов исследователи смогут увидеть не только расположение атомов в молекулах, но и происходящие там процессы. Это позволит выйти на новый уровень в исследованиях в области физики, химии, материаловедения, наук о жизни, биомедицины. Например, при создании новых лекарств специалисты, зная точное расположение атомов в молекулах белков, смогут подобрать вещества, которые будут блокировать или, наоборот, стимулировать их работу. Знание же структуры кристаллов позволит разрабатывать материалы с заданными свойствами.

Регистрация нейтрино по упругому отскоку

В сентябре 2020 года большой международный коллектив физиков, в том числе и из России, сообщил об открытии упругого когерентного рассеяния нейтрино на ядрах вещества. Это явление предсказал в 1974 году теоретик из Массачусетского технологического института Даниэль Фридман. Нейтрино — неуловимая частица, и для её поимки исследователи строят огромные установки, содержащие десятки тысяч тонн воды. Фридман выяснил, что из-за волновых свойств нейтрино будет согласованно взаимодействовать со всеми протонами и нейтронами ядра, что значительно повысит число рассматриваемых взаимодействий — отскоков нейтрино от ядра. За 461 день исследователи наблюдали 134 таких события.

Это открытие не заставит переписывать учебники. Его значение заключается в создании экспериментаторами детектора небольшого размера, в котором находится всего лишь 14,6 кг кристаллов иодида цезия. Малые переносные нейтринные детекторы найдут разнообразные применения, например для мониторинга ядерных реакторов. К сожалению, они не смогут заменить детекторы-гиганты во всех экспериментах, поскольку детектор, основанный на когерентном рассеянии, не способен различать типы нейтрино.

Темпоральный кристалл — два варианта

В марте две команды исследователей из США сообщили об обнаружении нового состояния материи, получившего название кристалла времени — темпорального кристалла (см. «Наука и жизнь» № 6, 2020 г., «Рябь времени, или Когда физика лучше фантастики»). Это новая идея в физике, широко обсуждаемая в последние годы. Подобные кристаллы представляют собой вечно движущиеся структуры частиц, сами по себе повторяющиеся во времени. Одна группа использовала цепочку атомов иттербия, в которой под действием лазеров колебалась проекция магнитного момента системы. Другая рассматривала кристалл, содержащий порядка миллиона расположенных в беспорядке дефектов, каждый из которых обладал своим магнитным моментом. Когда такой кристалл подвергли воздействию импульсов микроволнового излучения для перевёртывания спинов, физики зафиксировали отклик системы на частоте, которая составила лишь долю частоты возбуждающего излучения. Работы вызвали дискуссию: можно ли считать подобные системы темпоральными кристаллами. Ведь теоретически системы должны колебаться без внешнего воздействия. Но в любом случае такие темпоральные кристаллы найдут применение в роли суперточных сенсоров, например для измерения малейших изменений температуры и магнитных полей.

Экзопланеты, похожие на землю

В последние годы астрономы обнаружили много экзопланет — планет, обращающихся вокруг других звёзд. Однако находки землеподобных планет в зоне, где может существовать жидкая вода, а значит, и жизнь (зона обитаемости), не так уж и часты. В феврале астрономы НАСА объявили об открытии в системе красного карлика TRAPPIST-1 семи экзопланет (три планеты найдены ещё в 2020 году), из которых пять близки по размеру к Земле, а две несколько меньше Земли, но крупнее Марса. Это больше, чем в какой-либо другой системе. По крайней мере три планеты, а возможно и все, находятся в зоне обитаемости.

TRAPPIST-1 — ультрахолодная, с температурой около 2500 К, карликовая звезда массой всего лишь 8% массы Солнца (то есть чуть больше планеты Юпитер), расположенная примерно в 40 световых годах от Земли. Планеты находятся очень близко к звезде, а орбита самой дальней из них намного меньше орбиты Меркурия. В августе астрономы, использующие космический телескоп Хаббл, сообщили о первых намёках на содержание воды в системе TRAPPIST-1, что делает возможным существование там жизни.

В апреле астрономы сообщили об открытии каменистой планеты по размеру в 1,4 раза больше Земли в зоне обитаемости другого красного карлика — LHS 1140. Света она получает в два раза меньше, чем Земля. Авторы открытия считают её хорошим кандидатом для поиска внеземной жизни.

В декабре американские астрономы сообщили об открытии восьмой планеты в системе звезды Кеплер-90, расположенной на расстоянии около 2500 световых лет от Земли. Эта система по числу планет наиболее близка к Солнечной системе. Правда, найденная планета располагается слишком близко к звезде, и температура на её поверхности более 400оС. Интересно, что планета была найдена при обработке данных телескопа Кеплер с помощью нейронной сети.

Завершение миссии «Кассини»

15 сентября падением на поверхность Сатурна завершилась 13-летняя миссия космического зонда «Кассини». Запущенный в 1997 году, он с 2004 года исследовал седьмую планету, передав на Землю огромное число данных и уникальных фотографий. Последний этап его жизни — «Большой финал» начался 26 апреля 2020 года. «Кассини» совершил 22 пролёта между планетой и внутренним кольцом. Такие глубокие «нырки» дали много новой информации, в частности об электрической и химической связи ионосферы Сатурна с кольцами.

На основании данных зонда в 2020 году астрономы пришли к выводу, что кольца Сатурна значительно моложе планеты, которой около 4,5 млрд лет. Возраст колец оценили в 100 млн лет, так что они современники динозавров.

Исследователи решили «уронить» зонд на планету, чтобы он случайно не занёс земные бактерии на спутники Сатурна Титан и Энцелад, где, возможно, имеются местные микроорганизмы.

Кварковый термояд

В ноябре в журнале «Nature» появилась статья, в которой два физика, из США и Израиля, теоретически предположили возможность протекания на кварковом уровне реакции, аналогичной термоядерной, но со значительно большим выделением энергии. Как известно, при термоядерной реакции лёгкие элементы сливаются с выделением энергии. Подобная реакция может происходить и при столкновении элементарных частиц, которые, по современным представлениям, состоят из кварков. В этом случае кварки столкнувшихся частиц будут взаимодействовать и перегруппировываться. В результате появится новая частица с другой энергией связи кварков и выделится энергия.

Исследователи указали две возможные реакции. В первой из них при слиянии двух очарованных кварков будет выделяться энергия 12 МэВ. При слиянии же двух нижних кварков должно выделяться 138 МэВ, что почти в восемь раз больше, чем в отдельном слиянии дейтерия и трития в термоядерной реакции (18 МэВ). Практическое применение этих предположений пока не рассматривается в силу малости жизни кварков.

Экситоны удалось сконденсировать

В декабре команда физиков из США, Великобритании и Нидерландов объявила об открытии новой формы материи, которую они назвали экситоний. Квазичастица экситон — особое возбуждённое состояние кристалла, которое можно представить как соединение электрона и дырки, похожее на атом водорода, — была предсказана в 1931 году советским физиком Яковом Ильичём Френкелем.

Экситон относится к бозонам, частицам с целым спином, а при достаточно низкой температуре система бозонов переходит в особое состояние, называемое конденсатом, в котором все частицы находятся в одном и том же квантовом состоянии и ведут себя как одна большая квантовая волна. Благодаря этому бозе-жидкость становится сверхтекучей или сверхпроводящей. Исследователям удалось обнаружить бозе-конденсат экситонов в кристаллах 1T-TiSe2.

Открытие важно для дальнейшего развития квантовой механики, а на практике, возможно, найдёт применение сверхпроводимость и сверхтекучесть экситония.

Первые астрономы

Наблюдая за ночным небосводом, люди заметили, что рисунок на нем меняется в зависимости от сезонов. Тогда они поняли, что земные и небесные процессы взаимосвязаны, и начали разгадывать их секрет. Первыми известными астрономами были шумеры и вавилоняне. Они научились предсказывать лунные затмения и измерять траектории движения планет, записывая наблюдения на глиняных табличках.

Египтяне ещё в IV веке до н. э. начали делить небо на созвездия и гадать по небесным светилам. В Древнем Китае прилежно отмечали все удивительные явления, такие как кометы, затмения, метеоры, новые звезды. Впервые комета упоминается в 631 году до нашей эры. В Древней Индии успехов было немного, хотя в V веке индийский астроном установил, что планеты вращаются вокруг своей оси.

Наблюдениями за звездами и планетами занимались инки, майя, кельтские друиды, древние греки. Последние сыпали как правильными, так и смешными теориями и предположениями. Например, Полюс Земли был далеко от Полярной звезды, а утренняя и вечерняя Венера считались разными звездами. Хотя некоторые были вполне точны, например, Аристарх Самосский полагал, что Солнце больше Земли, и верил в гелиоцентризм. Эратосфен измерил земную окружность и наклон эклиптики к экватору.

Вселенная расширяется (и все быстрее)

В 1929 году астроном Эдвин Хаббл обнаружил, что Вселенная расширяется. Он был старательным и прилежным наблюдателем со своим 100-дюймовым телескопом на горе Вильсон в Калифорнии и сделал множество открытий вроде настоящих расстояний до галактик. Он вглядывался в новые звезды в этих галактиках, оценивал их яркость и затем рассчитывал, как сильно должна была тускнеть эта яркость с расстоянием. Затем, основываясь на работе астронома Весто Слифера, Хаббл измерил движение галактик и опубликовал работу, в которой окончательно показал расширение Вселенной.

Открытие было весьма громким, но еще больше астрономы удивились в конце 90-х годов прошлого века, когда обнаружили, что расширение ускоряется. Астрономы, измеряющие сверхновые в далеких галактиках, обнаружили, что эти сверхновые были менее яркими, чем предсказывали по их красному смещению (что указывает на то, что они удаляются от нас). Это открытие в конечном итоге принесло ученым Нобелевскую премию.

Революция Коперника

Николай Коперник – ученый-астроном, который считается одним из зачинателей научной революции. До него, в эпоху средневековья, астрономы в основном подстраивали свои наблюдения под принятую церковью и обществом геоцентрическую систему Птолемея. Хотя отдельные личности, как Николай Кузанский или Георг Пурбах, все же выдвигали достойные гипотезы и расчеты, научные рассуждения носили достаточно отвлеченный характер.

В труде «О вращении небесных сфер», опубликованном в 1543 году, Коперник предлагает гелиоцентрическую модель. Согласно этому, Солнце является звездой, вокруг которой движется Земля и остальные планеты. Данную гипотезу поддерживали ещё в Древней Греции, но все это были лишь предположения.

Коперник в своем труде предоставил четкие аргументы и логические заключения. Его идею продолжили развивать многие великие астрономы, такие как Джордано Бруно, Галилео Галилей, Кеплер, Ньютон. Не все его мысли были верны. Так, Коперник считал, что орбиты планет круговые, Вселенная ограничивается Солнечной системой, однако его труд перевернул прежнее научное представления мира.

Галилео Галилей

Неоценимый вклад в астрономическую науку внес Галилео Галилей – итальянский астроном, физик, математик и философ. Одной из самых известных его заслуг является изобретение телескопа. Ученый создал первый в мире оптический прибор с линзами, чтобы наблюдать за небом.

Благодаря телескопу физик-астроном определил, что поверхность Луны не гладкая, как считали раньше. Обнаружил, что на Солнце есть пятна, облака Млечного Пути являются многочисленными тусклыми звездами, а вокруг Юпитера вращается несколько планет.

физик астроном

Галилей был ярым сторонником теорий Коперника. Он был убежден, что Земля вращается не только вокруг Солнца, но и вокруг своей оси, чем вызывает приливы и отливы океана. Это стало причиной многолетней борьбы с церковью.

Телескоп признали неисправным, а богохульнические идеи неверными. Перед инквизицией Галилео вынужден был отречься от своих доводов. Именно ему приписывают знаменитую фразу, которую он якобы произнес позже: «И все-таки она вертится!»

А у нас в системе газ

В центральной части нашей галактики обнаружена мощная утечка газа — его облака вырываются со скоростью около 3 млн км/ч, причем источник остается неизвестен. Это явление было открыто еще в 2010 году — оно напоминает два огромных пузыря, расположенные над и под условной плоскостью Млечного Пути. Но в тот момент не было известно, ни когда, ни откуда газовые пузыри появились. Недавно благодаря результатам, полученным международной командой ученых под руководством Эндрю Фокса с помощью телескопа Хаббла, удалось найти ответ хотя бы на первый из вопросов. События, которые привели к такой «загазованности», происходили примерно два с половиной миллиона лет назад. Впрочем, вторая, гораздо более интересная загадка, пока так и остается загадкой.
Существуют две наиболее вероятные гипотезы о том, что это было. Согласно первой, дело в рождении и взрывах сверхновых в центре Млечного Пути, вторая видит причину газового конфуза в массивной черной дыре, расположенной в той же области. Новое исследование не смогло ни подтвердить, ни опровергнуть хотя бы одну из них, а также не предложило альтернативных версий. Правда, какая-то конкретика все-таки появилась: например, в составе газа удалось обнаружить кремний, алюминий и углерод, то есть элементы, которые возникают в звездах. Ученые также смогли измерить температуру этих выхлопов, и цифры тоже оказались звездного порядка: чуть менее 10 000 градусов Кельвина (или около 9700 Цельсия). Это горячее, чем поверхность Солнца, где фиксируется чуть менее 6000 градусов Кельвина, но в разы меньше, чем температура солнечной короны и, тем более, ядра. По словам Эндрю Фокса, мы присутствуем на зрелищном спектакле космического масштаба: «Эти облака находятся в нашей собственной галактике и удалены от нас всего на 25 тысяч световых лет. Мы как будто сидим в первом ряду зрительного зала и можем наблюдать детали этих структур».

Фото

Наука

Сложные отношения: Луна, солнечный ветер и магнитосфера Земли

Иоганн Кеплер

Ученый-астроном Иоганн Кеплер считал, что астрономия является ответом на загадки тайной связи между космосом и человеком. Своими знаниями он пользовался, чтобы предсказывать погоду и урожайность. Он также поддерживал идеи Коперника, благодаря которым смог продвинуться ещё дальше в научных достижениях.

Кеплеру удалось объяснить видимую неравномерность движения планет, на основе трех выведенных им законов. Он ввел понятие орбит, форму которых определил как эллипс. Ученый также вывел уравнение, которое позволяет рассчитать положение небесных тел.

великие астрономы

Все научные взгляды Кеплера совмещались с мистицизмом. Подобно пифагорейцам, он придерживался мнения о существовании особой гармонии в движении космических тел и пытался найти её числовое значение. Увлеченный тайным смыслом, он несколько компрометировал свои научные достижения, которые в конечном итоге были весьма точны.

Особенности Астрономии

Интересные факты об астрономии

Благодаря астрономии человечество узнало, что всего на небосводе 88 созвездий. При этом ни одно из них не накладывается и не пересекается с другим.

Интересные факты об астрономии в том, что практически все планеты получили свои названия в честь Богов. Исключение – Земля.

Во Вселенной миллиарды Галактик. Они образуют сгущения, цепочки, слои, которые в свою очередь разделяются свободным пространством.

Когда возраст Вселенной составлял 14 миллионов лет, температура в космосе была более +26 градусов. То есть фактически, как в наши дни летом на Земле.

Плотность Сатурна в 2 раза меньше плотности воды. Если бы планету можно было погрузить в жидкость, она бы не утонула, а осталась бы на поверхности.

Каждый год на нашу планету попадают тонны космической пыли. Ежедневно на Землю падает несколько сот тысяч метеоритов. Разумеется, основная их часть сгорает в атмосфере. Поэтому вреда такие небесные тела не приносят. Из-за космических частиц масса нашей планеты за последние несколько столетий возросла на 1 миллиард тонн.

Первый открытый астероид выявил итальянец 1 января 1801 года. Он получил имя – Церера. Это крупнейший астероид, диаметр которого около 940 километров.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: