Почему Вселенная плоская, а не сферическая?


Как выглядит Вселенная?

С Земли человек может невооруженным глазом наблюдать лишь малую часть вселенной. Мы привыкли называть это небом со звёздами. Но это только ничтожная песчинка в необъятном космическом пространстве.

Рассматривать и изучать небо человечество начало сначала с помощью телескопов. Затем новые технологии позволили запустить ракеты в космос. И мы получили более яркое представление о космических просторах.

Вспомним, известный телескоп Хаббл, запущенный в 1990 году.Он отправил на Землю множество уникальных фотографий из космоса. Учёные постоянно совершенствуют и создают новые технологии. Бесспорно, наука не стоит на месте.

На сегодняшний день, известно около 500 миллиардов галактик, многочисленное количество звёзд и планет. Кроме того, создано большое количество возможных и реальных моделей вселенной.

Удивительное «светило»

Все галактики распространяют свет. Какие-то образования светят сильно, какие-то отличаются умеренным «освещением». Но существует самая яркая галактика во вселенной, интенсивность свечения которой не похожа ни на что другое. Ее имя — WISE J224607.57-052635.0. Располагается эта «лампочка» на расстоянии целых 12,5 миллиардов световых лет от Солнечной системы, а светит она, как 300 триллионов Солнц разом. Заметим, что подобных образований на сегодняшний день существует около 20, причем не следует забывать о понятии «светового горизонта».

Проще говоря, со своего места мы видим только те объекты, образование которых произошло около 13 миллиардов лет тому назад. Дальние области недоступны взору наших телескопов просто потому, что свет оттуда банально не успел дойти. Так что в тех краях наверняка существует что-то аналогичное. Вот какая самая яркая галактика во Вселенной (точнее, в ее видимой части).

Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной. Прежде всего следует рассмотреть основные свойства Вселенной, которые должна описываться в рамках космологической модели:

  • Модель должна учитывать наблюдаемые расстояния между объектами, а также скорость и направление их движения. Подобные расчеты основываются на законе Хаббла: cz =H 0D
    , где
    z
    – красное смещение объекта,
    D
    – расстояния до этого объекта,
    c
    – скорость света.
  • Возраст Вселенной в модели должен превышать возраст самых старых в мире объектов.
  • Модель должна учитывать первоначальное обилие элементов.
  • Модель должна учитывать наблюдаемую .
  • Модель должна учитывать наблюдаемый реликтовый фон.

Рассмотрим кратко общепризнанную теорию возникновения и ранней эволюции Вселенной, которая поддерживается большинством ученых. Сегодня под теорией Большого взрыва подразумевают комбинацию модели горячей Вселенной с Большим взрывом. И хотя данные концепции сперва существовали независимо друг от друга, в результате их объединение удалось объяснить первоначальный химический состав Вселенной, а также наличие реликтового излучения.

Согласно данной теории, Вселенная возникла около 13,77 млрд лет назад из некоторого плотного разогретого объекта — , плохо поддающееся описанию в рамках современной физики. Проблема космологической сингулярности, помимо всего прочего, в том, что при ее описании большинство физических величин, вроде плотности и температуры, стремятся к бесконечности. При этом, известно, что при бесконечной плотности (мера хаоса) должна устремляться к нулю, что никак не совмещается с бесконечной температурой.

  • Первые 10 -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.
  • Планковский момент – момент окончания квантового хаоса, который выпадает на 10 -43 секунду. В этот момент параметры Вселенной равнялись , вроде планковской температуры (около 10 32 К). В момент планковской эпохи все четыре фундаментальные взаимодействия (слабое, сильное, электромагнитное и гравитационное) являлись объединенными в некое одно взаимодействие. Рассматривать планковский момент как некоторый продолжительный период – не представляется возможным, так как с параметрами меньше планковских современная физика не работает.
  • Стадия . Следующей стадией истории Вселенной стала инфляционная стадия. В первый момент инфляции от единого суперсимметричного поля (ранее включающего поля фундаментальных взаимодействий) отделилось гравитационное взаимодействие. В этот период вещество обладает отрицательным давлением, что вызывает экспоненциальный рост кинетической энергии Вселенной. Проще говоря, в данный период Вселенная стала очень быстро раздуваться, а ближе концу энергия физических полей переходит в энергию обычных частиц. В конце данной стадии значительно повышается температура вещества и излучения. Вместе с окончанием стадии инфляции выделяется и сильное взаимодействие. Также в этот момент возникает .
  • Стадия радиационного доминирования. Следующая стадия развития Вселенной, которая включает несколько этапов. На этой стадии температура Вселенной начинает понижаться, образуются кварки, затем адроны и лептоны. В эпоху нуклеосинтеза происходит образование начальных химических элементов, синтезируется гелий. Однако, излучение все еще преобладает над веществом.
  • Эпоха доминирования вещества. Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон. Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Вышеописанная картина сложена из нескольких основополагающих теорий и дает общие представление о формировании Вселенной на ранних этапах ее существования.

Современное представление о наблюдаемой Вселенной

Наблюдаемой называют часть Вселенной, которая представляет собой прошлое относительно наблюдателя. Иначе говоря, это пространство, где материя смогла бы достичь расположения настоящей Земли.

У наблюдаемой Вселенной существует граница. Это, так называемый, космологический горизонт. Все, что на нём расположено имеет бесконечное красное смещение.

Современные методики позволяют изучить часть такой Вселенной. Её назвали Метагалактикой. Теоретически за её пределами также находятся космические объекты.

Многие гипотезы построены на том, что наблюдаемая Вселенная является небольшой частью полной Вселенной. Сегодня наука занимается в основном изучение Метагалактики. Но учёные продолжают попытки выйти за её границы.

Стационарная Вселенная

Можно сказать, что теория стационарной Вселенной уже устарела. Но в своё время её поддерживали многие учёные. Это суждение о возникновении Вселенной, абсолютно противоположное теории Большого Взрыва. Считалось, что во время расширения Вселенной образовывалась новая материя. Тем самым однородность и изотропность существовали и в пространстве, и во времени.

Однако, когда открыли реликтовое излучение, стационарная модель стала малоактуальной. А сейчас и вовсе осталась только в истории космологии.

Жизнь в Солнечной системе

Несомненно, наша планета уникальна. Почему только на Земле возникла жизнь? На этот вопрос учёные умы столетиями пытаются найти и дать ответ.

Как известно, Земля образовалась примерно 4,5-5 миллиардов лет назад. А жизнь на ней зародилась 1,2 миллиарда лет спустя.

Существует несколько теорий образования жизни на голубой планете. Но главными критериями её возникновения являются вода, температура, защита от ультрафиолетового излучения Солнца и сила притяжения планеты.

Сейчас учёные пришли к мнению, что жизнь есть не только на Земле. Они активно исследуют другие планеты и спутники Солнечной системы.

Анализируя данные, не исключена возможность для полноценной жизни и на других объектах космоса. Но, к сожалению, пока это только наработки и исследования.

Одиноки ли мы во вселенной? Однозначного ответа на этот вопрос нет.

«Возможно всё, на невозможное просто требуется больше времени» Дэн Браун

Что было вначале?

Полное отсутствие пространства, времени, абсолютное ничего — так можно описать то, что было до Большого взрыва. Вселенная, будучи в состоянии сингулярности, была бесконечно плотной и невообразимо маленькой, меньше любого атома — размером примерно с протон. Из-за высокой плотности энергии температура сингулярности также доходила до внушительных значений. То, как выглядела сингулярность, точно смоделировать мы вряд ли сможем, как и в точности описать то, что творилось в ней. Ведь все актуальные законы физики не рассчитаны на описание таких состояний. Но одно можно сказать точно — до того, пока сингулярность не взорвалась, ни пространства, ни времени не было.

Как думаете, возможно ли менее чем за одну секунду создать целую вселенную? — Да. Жалкие доли планковского времени потребовались для образования первичной структуры из которой возникло все наше пространство. Так называемая «планковская эпоха» началась с момента, как сингулярность взорвалась — начался процесс расширения Вселенной. Сравнить его можно с пружиной — если вы будете её сжимать, тогда она накопит в себе какое-то количество энергии, и как только вы отпустите руки эта энергия будет высвобождена резким самостоятельным растягиванием пружины.

Никаких объектов в тот период не было. Вселенная была размером с горошину и с температурой в миллиарды градусов. Длилась эта эпоха крайне недолго — от нуля до 10^(-43) секунды. В этот период все образованное пространство состояло из кварков и глюонов, из которых (по мере расширения и остывания пространства) стали образовываться протоны и электроны. Об этом чуть позже. С 10^(-43) до 10(-36) секунды начали разделяться из одной суперсилы силы взаимодействия (гравитация, электромагнетизм, сильная и слабая ядерные силы), благодаря которым существуем мы и наш мир. До этого перечисленные явления были одним сплошным сгустком энергии. Без гравитации не смогли бы образовываться планеты, звезды, живые организмы и так далее. Без электромагнетизма не было бы реакций между суборбитальными частицами, что также помешало бы возникновению материи в пространстве. Без ядерных сил было бы невозможным образование новых химических элементов.

В период между 10^(-36) до 10^(-32) Вселенная после взрыва стала остывать. В это время её температура стала составлять примерно тысячу градусов по Кельвину. Спустя еще одну крошечную долю 10^(-31) началась эпоха инфляции. Ученые считают, что в этот период Вселенная была равномерно заполнена разгоряченной энергией. Высокая плотность и давление стали причиной начала экспоненциального расширения пространства. Когда все стало остывать, кварки и глюоны начали объединяться и образовывать простейшие частицы (протоны и электроны). Вместе с частицами стали образовываться и античастицы. В целом отличия между ними заключается в противоположных зарядах. Если обычные частицы протона и электрона имеют положительный и отрицательный заряд, то их античастицы имеют соответственно отрицательный и положительный заряды, то есть все наоборот. Когда в период инфляции частицы и античастицы двигались в пространстве с околосветовой скоростью, сталкиваясь они уничтожали друг друга. Выходит, что все мы, планеты, звезды, галактики созданы из той крайне скромной горсточки частиц, которые не были уничтожены античастицами. Именно поэтому в нашем мире материя доминирует над антиматерией. Время шло — Вселенная стала размером с нашу солнечную систему и все также продолжала остывать, образовывая постепенно внутри себя материю.

Процесс этот требовал времени, так как на момент 10^(-6) секунды наша Вселенная все еще была в миллионы раз горячее нашего Солнца. Субатомные частицы еще не могли объединяться в атомы, чтобы потом из атомов образовывались химические элементы, а после этого физические тела. Этот процесс можно сравнить с кипячением или заморозкой воды. Если мы возьмем небольшой кубик льда и поместим его в герметичную емкость, которую мы будем постепенно нагревать, лед сначала растает и перейдет в жидкое состояние. Далее мы увеличиваем мощность нагревания, и вода начнет переходить в газообразное состояние, то есть становится паром. Потом, если мы чисто гипотетически возьмем и прибавим еще температуры, мы разделим молекулы пара на составные элементы — водород и кислород. Как только мы перестанем нагревать емкость, и поместим её в холодильник, процесс пойдет в обратную сторону. В конечном счете, когда температура внутри опустится ниже отметки нуля в градусах по Цельсию, мы получим твердую материю — лед.

Со Вселенной точно также — после того, как пространство стало остывать, частицы в нем начали объединяться в атомы. Самым первым и самым распространенным во всей Вселенной веществом является водород, так как для образования всего одной молекулы требуется два атома. Мощность и плотность энергии в пространстве были все также велики. В первые минуты в действие начинает вступать радиация — благодаря термоядерным реакциям молекулы водорода начинают образовывать изотопы: дейтерий и тритий. После этого начался синтез более тяжелых элементов, в пространстве появился гелий. С течением времени молекулы водорода и гелия стали объединяться и образовывать звезды. В дальнейшем звезды стали генераторами других химических элементов благодаря термоядерному синтезу, происходящему внутри них.

Ядра звезд являются очень плотными телами, имеющими большую массу! наверное, многие знают, что с течением времени звезды гаснут, взрываются и иногда образовывают на своем месте черные дыры. Благодаря тому, что во время своей жизни ядро у звезд выделяет огромное количество энергии — это не позволяет им сжаться и поглотить самих себя. Выходящая энергия в данном случае является противовесом гравитации. Поэтому они, так сказать, балансируют. А вообще — что такое гравитация? Почему, например, на Земле притяжение больше, чем на Луне или на Марсе? Оказывается, дело в том, что абсолютно все объекты искривляют пространство-время, образовывая зону, при пересечении которой другие объекты начинают притягиваться, попадая в эдакую «воронку». Давайте проведем мысленный эксперимент и представим, что у нас есть натянутая эластичная ткань, почти как у батута. Если поместить в центр, или в любое другое место крупный металлический шарик, мы увидим, как под его весом на ткани вокруг образуется углубление. Дальше если мы возьмем один или несколько шариков меньшего размера, поместим их рядом, то мы увидим, как маленькие шарики будут скатываться к большому. Именно так просто работает гравитация. Но что, если мы, например, возьмем гантелю весом эдак десять килограммов и с усилием бросим в нашу тряпичную модель «пространства-времени»? — Ткань порвется, образуется дыра. Примерно так, если говорить простым языком, образуются черные дыры в нашей Вселенной. Посмотрите на видео, как один из американских преподавателей провёл этот эксперимент вместе со своими учениками:

На самом деле гравитация куда более важное явление в нашей вселенной, чем может показаться. Без неё не было бы галактик, звёзд, планет и нас с вами. Что мы еще можем узнать о Большом взрыве? Можем ли мы заглянуть в прошлое на 14 миллиардов лет? Оказывается да! О реликтовом излучении в следующей главе.

Очевидная бесконечность

Так можно было бы охарактеризовать размер нашей Вселенной. Но… Учёные нашего времени определили наблюдательную Вселенную с её границами и размерами. Кстати, немалыми.

Бесконечность пространства присутствует в основном в философских взглядах. В современной науке, как оказалось, границы стали более реальными и отчётливыми.

Только как бы не развивался прогресс, вопрос о том, что же находится за этими гранями, до сих пор остаётся открытым. Поэтому, как бы парадоксально это не звучало, бесконечность поистине остаётся очевидной. Какой-то замкнутый круг, не правда ли?

«Всё из ничего: как возникла Вселенная»

Откуда взялась Вселенная? Что было до нее? Чего ждать в будущем? Физик Лоуренс Краусс предпринимает попытку доступно ответить на эти вопросы. Его новая книга «Всё из ничего: Как возникла Вселенная» выходит в издательстве «Альпина Нон-фикшн». По этому поводу N + 1

предлагает своим читателям ознакомиться с отрывком из нее, в котором Краусс объясняет, почему в далеком будущем нашу галактику окружит пустое и неизменное пространство, а ученые не найдут никаких следов расширения Вселенной.

Наше печальное будущее

В каком-то смысле обнаружить, что живешь во Вселенной, где всем правит ничто, интересно и восхитительно. Структуры, которые мы видим, вроде звезд и галактик, возникли из ничего в результате квантовых флуктуаций. В среднем полная ньютоновская гравитационная энергия каждого объекта во Вселенной равна — ничему. Наслаждайтесь этой мыслью, пока есть возможность, поскольку, если все это правда, мы живем чуть ли не в самой худшей из вселенных, по крайней мере с точки зрения будущего всех живых организмов.

Вспомним, что всего 100 лет назад Эйнштейн разработал ОТО. Тогда все считали, что наша Вселенная неизменна и вечна. Более того, Эйнштейн не просто высмеял Леметра за предположение о Большом взрыве, но даже выдумал космологическую постоянную, лишь бы сохранить стационарную модель Вселенной.

Сейчас, по прошествии века, мы, ученые, можем гордиться, что открыли столько фундаментального — и расширение Вселенной, и реликтовое излучение, и темное вещество, и темную энергию.

Но что таит в себе будущее?

А будущее наше очень поэтично. Если можно так выразиться.

Вспомним: вывод о том, что в расширении нашей Вселенной доминирует энергия пустого на первый взгляд пространства, делается на основании того факта, что расширение происходит с ускорением. И, как и ранее обстояло с инфляцией и как описано в предыдущей главе, наша наблюдаемая Вселенная стоит на пороге расширения со скоростью больше скорости света. А со временем из-за расширения с ускорением все станет только хуже.

Это означает, что чем дольше мы будем ждать, тем меньше сможем видеть. Галактики, которые мы видим сейчас, в один прекрасный день начнут удалятся от нас со сверхсветовой скоростью, а это значит, что они станут для нас невидимыми: свет, который они испускают, не сможет преодолеть расширяющееся пространство и никогда до нас не долетит. Эти галактики исчезнут с нашего горизонта.

Произойдет это не совсем так, как вы, возможно, себе представляете. Галактики не то чтобы вдруг погаснут и вмиг исчезнут с ночного неба. Просто по мере приближения скорости их удаления к скорости света будет увеличиваться красное смещение. В конце концов весь видимый свет от них сдвинется в инфракрасное, микроволновое, затем радиоизлучение и так далее до тех пор, пока длина волны света, который они испускают, не станет больше размера видимой Вселенной, и в этот момент их можно будет официально признать невидимыми.

Можно посчитать, сколько времени это займет. Поскольку галактики в нашем скоплении связаны взаимным гравитационным притяжением, они не удаляются от нас в связи с фоновым расширением Вселенной, которое открыл Хаббл. Галактики за пределами нашей группы находятся примерно на 1/5000 расстояния до той точки, где скорость удаления объектов приближается к световой. Чтобы туда добраться, у них уйдет около 150 млрд лет, примерно в 10 раз больше нынешнего возраста Вселенной, и тогда весь свет от звезд в этих галактиках сдвинется в красную сторону примерно в 5000 раз. Примерно через 2 трлн лет их свет сдвинется в красную сторону настолько, что длина его волны станет равна размеру видимой Вселенной — и вся остальная часть Вселенной буквально исчезнет.

Казалось бы, 2 трлн лет — большой срок. Так и есть. Однако с космической точки зрения это отнюдь не вечность. Самые долгоживущие звезды главной последовательности (у которых такая же эволюционная история, как и у нашего Солнца) проживут гораздо дольше Солнца и через 2 трлн лет будут еще вовсю светить (в то время как наше Солнце погибнет всего через 5 млрд лет). Так что в отдаленном будущем на планетах вокруг этих звезд вполне могут быть цивилизации, черпающие энергию от своих светил, с водой и органическими соединениями. И астрономы с телескопами тоже вполне могут быть. Посмотрят они в космос — а там все, что мы видим сейчас, все 400 млрд галактик, составляющих на сегодня нашу видимую Вселенную, возьмут и исчезнут!

Я пытался донести этот довод до Конгресса, чтобы убедить его увеличить финансирование космологических исследований прямо сейчас, пока у нас еще есть время наблюдать все это. Однако для конгрессмена даже два года — долгий срок, а уж на 2 трлн лет вперед он заглянуть просто не в состоянии.

Так или иначе астрономов далекого будущего ждал бы большой сюрприз, если бы только они знали, что теряют. Но этого они знать не будут. Как несколько лет назад выяснили мы с коллегой Робертом Шеррером из Университета Вандербильта, исчезнет не только вся остальная Вселенная — по существу, исчезнут и все свидетельства, которые говорят нам сегодня, что мы живем в расширяющейся Вселенной, начавшейся с Большого взрыва, вместе со всеми свидетельствами существования в пустом пространстве темной энергии, которую можно было бы обвинить в этой пропаже.

А ведь не прошло и 100 лет с тех пор, когда все считали, что Вселенная неизменна и вечна, то есть звезды и планеты появляются и исчезают, но на больших масштабах Вселенная остается как была. Получается, что в далеком будущем, когда от нашей планеты и цивилизации, скорее всего, не останется даже праха на свалке истории, иллюзия, которую наша цивилизация разделяла до 1930-х гг., вернется и отомстит за себя сторицей.

К эмпирическому доказательству Большого взрыва привели три основные вехи — три наблюдения, благодаря которым, даже если бы на свете не было ни Эйнштейна, ни Леметра, нам все равно волей-неволей пришлось бы признать, что Вселенная в самом начале была плотной и горячей. Это наблюдения расширения Вселенной, которые проделал Хаббл; это наблюдения космического микроволнового фона; это соответствие наблюдаемой распространенности во Вселенной легких элементов — водорода, гелия и лития — тем количествам, которые должны были возникнуть в первые несколько минут истории Вселенной.

Начнем с хаббловского расширения Вселенной. Откуда мы знаем, что Вселенная расширяется? Мы измерили скорость удаления далеких объектов в зависимости от расстояния до них. Но, когда все видимые объекты вне нашего галактического скопления (в котором все мы связаны узами гравитации) исчезнут за горизонтом, не останется никаких следов расширения, которые наблюдатели могли бы зарегистрировать, — ни звезд, ни галактик, ни квазаров, ни даже огромных газовых облаков. Расширение достигнет таких масштабов, что вынесет из нашего поля зрения все объекты, которые от нас удаляются.

Более того, на масштабе менее 1 трлн лет все галактики в нашей местной группе слипнутся в своего рода огромную сверхгалактику. Наблюдатели в далеком будущем увидят примерно то же самое, что мы могли увидеть в 1915 г.: одну-единственную галактику, в которой находится их звезда и их планета, окруженную обширным пустым и неизменным пространством.

Напомню также, что все свидетельства того, что пустое пространство обладает энергией, мы получаем из наблюдений темпа, с которым ускоряется расширение нашей Вселенной. А без признаков расширения понять, что оно еще и ускоряется, будет невозможно. Вообще-то по странному совпадению мы живем в ту единственную эпоху истории Вселенной, когда наличие темной энергии, наполняющей пустое пространство, в принципе довольно легко зарегистрировать. Конечно, эта эпоха длится несколько сотен миллиардов лет, но в вечно расширяющейся Вселенной это всего лишь мгновение космического ока.

Если мы предположим, что энергия пустого пространства относительно постоянна, как было бы в случае космологической постоянной, то в гораздо более ранние времена плотность энергии вещества и излучения значительно превосходила бы плотность энергии пустого пространства — просто потому, что при расширении Вселенной плотность вещества и излучения снижается, поскольку растет расстояние между частицами, поэтому в заданном объеме остается меньше объектов. В более ранние времена, скажем 5–10 млрд лет назад, плотность вещества и излучения была гораздо больше, чем сегодня. Поэтому во Вселенной тогда и раньше преобладали вещество и излучение со своим гравитационным притяжением. Расширение Вселенной в те ранние времена замедлялось, а гравитационное воздействие энергии пустого пространства невозможно было бы зарегистрировать.

По тем же соображением в далеком будущем, когда Вселенной исполнится несколько сотен миллиардов лет, плотность вещества и излучения станет еще меньше, и можно подсчитать, что средняя плотность темной энергии будет превосходить плотность всего оставшегося во Вселенной вещества и излучения намного более, чем в тысячу миллиардов раз. К этому времени она будет полностью управлять гравитационной динамикой Вселенной на больших масштабах. Однако в эту позднюю эпоху ускоренное расширение Вселенной станет невозможно пронаблюдать. В этом смысле энергия пустого пространства по самой своей природе обеспечивает определенный, конечный отрезок времени, в который его можно наблюдать, и мы, что примечательно, живем именно в этот космологический момент.

Подробнее читайте:
Краусс, Лоуренс
. Всё из ничего: Как возникла Вселенная / Лоуренс Краусс ; Пер. с англ. [Анастасия Бродоцкая и Наталья Лисова, под научной редакцией Игоря Лисова] — М.: Альпина нон-фикшн, 2020. — 283 с.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: