Как живут на МКС: физкультура, гигиена и невесомые весы

Откуда берутся вода и кислород на МКС?

Гимн 13 отдела.

Не космонавты мы, не летчики, Не инженеры, не врачи. А мы водо-водопроводчики: Мы гоним воду из мочи! И не факиры, братцы, вроде мы, Но, не бахвалясь, говорим: Круговорот воды в природе мы В системе нашей повторим! Наука наша очень точная. Вы только дайте мысли ход. Мы перегоним воды сточные На запеканки и компот! Проехав все дороги Млечные, Не похудеешь вместе с тем При полном самообеспеченьи Наших космических систем. Ведь даже торты превосходные, Люля кебаб и калачи В конечном счете — из исходного Материала и мочи! Не откажите ж, по возможности, Когда мы просим по утрам Наполнить колбу в общей сложности Хотя бы каждый по сто грамм! Должны по-дружески признаться мы, Что с нами выгодно дружить: Ведь без утили-тилизации На белом свете не прожить!!!

(Автор — Варламов Валентин Филиппович — псевдоним В.Вологдин)

«Предыдущие космические миссии – Меркурий, Джемини, Аполлон, брали с собой все необходимые запасы воды и кислорода и сбрасывали жидкие и газообразные отходы в космос»

, — поясняет Роберт Багдижян (Robert Bagdigian) из Центра Маршалла.

Если сформулировать кратко: системы жизнеобеспечения космонавтов и астронавтов были «разомкнутыми» – они полагались на поддержку с родной планеты.

Про йод и КА «Апполон», роль туалетов и варианты (UdSSR or USA) утилизации отходов жизнедеятельности на ранних КА я расскажу в другой раз.

На фото: портативная система жизнеобеспечения экипажа «Аполлон-15», 1968 г.

Оставив рептилоида я подплыл к шкафчику санитарных средств. Повернувшись спиной к счетчику, достал мягкий гофрированный шланг, расстегнул брюки. – Потребность в удалении отходов? Господи… Отвечать я, конечно, не стал. Включил отсос, и попытался забыть про любопытный взгляд рептилоида, буравящий спину. Ненавижу эти мелкие бытовые проблемы.

«Звёзды — холодные игрушки», С.Лукьяненко
Вернусь к воде и О2.

Сегодня на МКС частично замкнутая система регенерации воды, и я попробую рассказать о подробности (на сколько сам в этом разобрался).

В соответствии с ГОСТ 28040-89 (даже не знаю действует ли он ещё)» Система жизнеобеспечения космонавта в пилотируемом космическом аппарате»-СЖО космонавта

-это «Совокупность функционально взаимосвязанных средств и мероприятий, предназначенных для создания в обитаемом отсеке пилотируемого космического аппарата условий, обеспечивающих поддержание энергомассообмена организма космонавта с окружающей средой на уровне, необходимом для сохранения его здоровья и работоспособности». В состав СЖО космонавта входят следующие системы:

*СОГС — система обеспечения газового состава, *СВО — система водообеспечения, *ССГО — система санитарно-гигиенического обеспечения, *СОП — система обеспечения питанием, *СОТР — система обеспечения теплового режима.

Можно гордиться. Робин Карраскилло (Robyn Carrasquillo), технический руководитель проекта ECLSS:

«Русские опередили нас в этой области,ещё космические аппараты «Салют» и «Мир» были способны конденсировать влагу из воздуха и использовали электролиз – пропускание электрического тока через воду–для производства кислорода».

Как всё начиналось (у нас).
1.СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ В ГЕРМЕТИЧНЫХ КАБИНАХ СТРАТОСТАТОВ, РАКЕТ И ПЕРВЫХ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ

Первому посещению человеком пространства за линией Кармана в космическом корабле предшествовали запуски стратостатов, ракет и искусственных спутников Земли, в которых имелись системы жизнеобеспечения для людей и животных (большей частью для собак).

В стратостатах «СССР-1» (1933 г.) и «Осоавиахим-1» (1934 г.) системы жизнеобеспечения включали запасы криогенного и газообразного кислорода; последний находился в баллонах под давлением 150 атм. Диоксид углерода удалялся с помощью ХПИ — химического поглотителя известкового в соответствии с реакцией: Са (ОН)2 + СО2 = Са (СО3) + Н2О

В ракетах, с помощью которых производилось зондирование ближнего космоса, находилась герметичная кабина с животными, имеющая в своем составе три баллона для смеси воздуха и кислорода. Диоксид углерода, выделяемый животными, удалялся с помощью ХПИ.

На борту первых искусственных спутников Земли в состав систем жизнеобеспечения для собак входили некоторые элементы будущих СЖО для космонавтов: устройство для приема пищи, ассенизационное устройство; очистка атмосферы и обеспечение кислородом осуществлялось с помощью надперекисных соединений, которые при поглощении диоксида углерода и паров воды выделяли кислород в соответствии с реакциями:

4КО2 + 2 Н2О = 3О2 + 4 КОН 2КОН + СО2 = К2 СО3 + Н2О К2 СО3 + Н2О + СО2 = 2 КНСО3

2. СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ БИОЛОГИЧЕСКИХ СПУТНИКОВ ЗЕМЛИ ТИПА «БИОН» И «ФОТОН»
Биологические спутники Земли-автоматические космические аппараты «БИОН» и «ФОТОН» предназначены для исследований влияния факторов космического полета (невесомость, радиация и др.) на организм животных. Примечательно, что Россия- по сути единственная страна в мире, имеющая автоматические космические аппараты для исследований на биологических объектах. Другие страны вынуждены посылать животных в Космос на наших аппаратах.

В разные годы научными руководителями программы «БИОН» были О.Г. Газенко и Е.А. Ильин. В настоящее время научным руководителем программы «БИОН» является О.И. Орлов, заместителями — Е.А. Ильин и Е.Н. Ярманова.

Биологический спутник «БИОН» снабжен системами водообеспечения и кормления животных, системой термовлагорегулирования, системой «день-ночь», системой обеспечения газового состава и др.

Система обеспечения газового состава автоматических космических аппаратов «БИОН» и «ФОТОН» предназначена для обеспечения животных кислородом, удаления диоксида углерода и газообразных микропримесей в спускаемом аппарате.

Состав:

— патронов с кислородосодержащим веществом и поглотителем вредных микропримесей; — патрона с поглотителем диоксида углерода и вредных микропримесей; — электровентиляторов; — датчиков для индикации работоспособности вентиляторов и герметичности газовых трактов; — газоанализатора; — блока управления и контроля.

Система обеспечивает комфортные условия в газовой среде спускаемого аппарата (замкнутый герметичный объем, содержащий 4,0-4,5 м3 воздуха) и представляет собой три регенеративных патрона и поглотительный патрон с электровентилятором на каждый патрон, обеспечивающих регенерацию воздуха по СО2, О2, СО и прочим вредным примесям. Включение и выключение микрокомпрессоров позволяет обеспечить заданный состав атмосферы объекта.

Принцип работы: воздух объекта вентилятором прокачивается через регенеративный патрон, где очищается от СО2 и вредных примесей и обогащается кислородом.

Избыток диоксида углерода убирается путем периодического включения поглотительного патрона. Поглотительный патрон также обеспечивает очистку от вредных примесей. Система работает с блоком управления и контроля и газоанализатором по кислороду и диоксиду углерода. При падении парциального давления кислорода до 20,0 кПа включается первый регенеративный патрон.

Если парциальное давление кислорода больше или равно 20,8 кПа, регенеративный патрон отключается и включается вновь при парциальном давлении кислорода 20,5 кПа. Включение второго и последующих патронов происходит при парциальном давлении кислорода 20,0 кПа (при условии падения концентрации), причем ранее включенные патроны продолжают работать. Поглотительный патрон включается периодически при парциальном давлении диоксида углерода 1,0 кПа, выключается при парциальном давлении диоксида углерода 0,8 кПа, вне зависимости от работы регенеративного патрона.

3. СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ НА ОСНОВЕ ЗАПАСОВ ДЛЯ ЭКИПАЖЕЙ КОСМИЧЕСКИХ КОРАБЛЕЙ ТИПА «ВОСТОК», «ВОСХОД», «СОЮЗ», «МЕРКУРИЙ», «ДЖЕМИНИ», «АПОЛЛОН», «ШАТТЛ», ОРБИТАЛЬНОЙ СТАНЦИИ «СКАЙЛЭБ»

Системы жизнеобеспечения советских космических кораблей типа «Восток», «Восход», «Союз», а также американских «Меркурий», «Джемини», «Аполлон» и транспортного корабля многоразового использования «Шаттл» были основаны полностью на запасах расходуемых материалов: кислорода, воды, пищи, средств удаления СО2 и вредных микропримесей.

4. РЕГЕНЕРАЦИОННЫЕ СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ НА ОСНОВЕ ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕССОВ ДЛЯ ЭКИПАЖЕЙ ОРБИТАЛЬНЫХ КОСМИЧЕСКИХ СТАНЦИЙ «САЛЮТ», «МИР», «МКС»

Функционирование систем жизнеобеспечения базирующихся на основе запасов расходуемых веществ, взятых с Земли, имеют существенный недостаток: их масса и габариты возрастают прямо пропорционально длительности космической экспедиции и количеству членов экипажей. По достижении определенной продолжительности полета СЖО на основе запасов могут быть препятствием для реализации экспедиции.

В таблице приведены массовые характеристики СЖО, основанных на запасах расходуемых веществ применительно к экспедиции длительностью 50, 100 и 500 суток для экипажа, состоящего из 6 человек:

Основываясь на нормах потребления основных компонентов СЖО, полученных в результате многолетней практики длительных орбитальных полетов на станциях типа «САЛЮТ», «МИР» и «МКС» (кислород — 0,96 кг/чел.сут., питьевая вода — 2,5 кг/чел.сут., пища — 1,75 кг/чел.сут. и т.д.), легко подсчитать, что необходимая масса запасов для экипажа, состоящего из 6 — и человек в условиях 500-суточного полета без учета массы тары и систем хранения составило бы величину более 58 тонн (см.табл.). В случае использования систем жизнеобеспечения, основанных на запасах расходных материалов, понадобилось бы создание систем хранения продуктов жизнедеятельности космонавтов: фекалий, мочи, конденсата атмосферной влаги, использованных санитарно-гигиенических и кухонных вод и т.д.

Что по факту трудно реализуемо или вообще неосуществимо (полёт к Марсу например).

В 1967-1968 годах в Институте медико-биологических проблем МЗ был проведен уникальный годовой медико-технический эксперимент с участием трех испытателей: Г.А.Мановцева, А.Н.Божко и Б.Н.Улыбышева. В гермокамерном эксперименте, длившемся 365 суток, проходила медико-биологическая и техническая оценка нового комплекса регенерационных систем жизнеобеспечения.

В состав СЖО наземного лабораторного комплекса входили:

система удаления диоксида углерода, система очистки атмосферы от вредных микропримесей, система генерирования кислорода, система регенерации воды из влагосодержащих продуктов жизнедеятельности испытателей, санитарно-гигиеническое оборудование, оранжерея, система контрольно-измерительной аппаратуры.

Экспериментальные регенерационные системы жизнеобеспечения на основе физико-химических процессов, испытанные в годовом медико-техническом эксперименте, явились прототипом штатных СЖО для экипажей орбитальных станций «Салют», «МИР» и «МКС».
Впервые в мировой практике пилотируемых полётов на космической станции «Салют-4» функционировала регенерационная система «СРВ-К»-система получения питьевой воды из конденсата атмосферой влаги. Экипаж в составе А.А.Губарева и Г.М.Гречко использовал воду, регенерированную в системе «СРВ-К», для питья и приготовления пищи и напитков. Система работала в течение всего пилотируемого полёта станции. Аналогичные системы типа «СРВ-К» работали на станциях «Салют-6», «Салют-7», «МИР».

Прим. от 28.02.17: спасибо за помощь в правке и познании этимологии artyums
Отступление: 20 февраля 1986 года вышла на орбиту советская орбитальная станция «Мир».

23 марта 2001 года она была затоплена в Тихом океане.

Нашу станцию «Мир» затопили, когда ей исполнилось 15 лет. Сейчас двум российским модулям, которые входят в состав МКС, уже тоже по 17. Но МКС никто пока топить не собирается…

Эффективность использования регенерационных систем подтверждена опытом многолетней эксплуатации например орбитальной станции «МИР», на борту которого успешно функционировали такие подсистемы СЖО, как:

«СРВ-К» — система регенерации воды из конденсата атмосферной влаги, «СРВ-У» — система регенерации воды из мочи (урины), «СПК-У» — система приема и консервации мочи (урины), «Электрон» — система генерирования кислорода на основе процесса электролиза воды, «Воздух» — система удаления диоксида углерода, «БМП» — блок удаления вредных микропримесей и др.

Аналогичные регенерационные системы (за исключением «СРВ-У») успешно функционируют в настоящее время на борту Международной космической станции (МКС).

В состав системы обеспечения жизнедеятельности (СОЖ) МКС входит подсистема обеспечения газового состава (СОГС). Состав: средства контроля и регулирования атмосферного давления, средства выравнивания давления, аппаратуру разгерметизации и наддува ПхО, газоаналитическую аппаратуру, систему удаления вредных примесей БМП, систему удаления углекислого газа из а, средства очистки атмосферы. Составной частью СОГС являются средства кислородообеспечения, включающие твердотопливные источники кислорода (ТИК) и систему получения кислорода из воды «Электрон-ВМ». При стартовом запуске на борту СМ имелось всего лишь 120 кг воздуха и два твердотопливных генератора кислорода ТГК.

→ Прямая онлайн трансляция с веб-камеры на МКС.

Для доставки 30 000 литров воды на борт орбитальной станции «МИР» и «МКС» потребовалось бы организовать дополнительно 12 запусков транспортного корабля «Прогресс», величина полезной нагрузки которого составляет 2,5 тонны. Если принять во внимание тот факт, что «Прогрессы» оборудованы баками для питьевой воды типа «Родник» емкостью 420 л, то количество дополнительных запусков транспортного корабля «Прогресс» должно было бы увеличиться в несколько раз.

На МКС цеолитовые поглотители системы «Воздух» захватывают углекислый газ (CO2) и высвобождают его в забортное пространство. Теряемый в составе CO2 кислород восполняется за счет электролиза воды (разложения ее на водород и кислород). Этим на МКС занимается система «Электрон», расходующая 1 кг воды на человека в сутки. Водород сейчас стравливают за борт, но в перспективе он поможет превращать CO2 в ценную воду и выбрасываемый метан (CH4). И конечно, на всякий случай на борту есть кислородные шашки и баллоны.

На фото: кислородный генератор и тренажер для бега на МКС, которые вышли из строя в 2011.

К сожалению полного круговорота веществ на орбитальных станциях пока не достигнуто. На данном уровне технологий с помощью физико-химических методов не удается осуществить синтез белков, жиров, углеводов и других биологически активных веществ. Поэтому диоксид углерода, водород, влагосодержащие и плотные отходы жизнедеятельности космонавтов удаляются в вакуум космического пространства.

В служебном модуле МКС введены и функционируют системы очистки «Воздух» и БМП, усовершенствованные системы регенерации воды из конденсата СРВ-К2М и генерации кислорода «Электрон-ВМ», а также система приема и консервации урины СПК-УМ. Производительность усовершенствованных систем увеличена более чем в 2 раза (обеспечивает жизнедеятельность экипажа до 6 человек), а энерго- и массозатраты снижены.

За пятилетний период (данные на 2006 г.)

их эксплуатации регенерировано 6,8 тонны воды 2,8 тонны кислорода, что позволило уменьшить массу доставляемых на станцию грузов более, чем на 11 тонн.

Задержка с включением в состав комплекса СЖО системы регенерации воды из урины СРВ-УМ не позволила осуществить регенерацию 7 тонн воды и уменьшить массу доставки.

«Второй фронт» — американцы

Техническая вода из американского аппарат ECLSS поставляется в российскую систему и американскую OGS (Oxygen Generation System), где затем «перерабатывается» в кислород.

Процесс восстановления воды из мочи – сложная техническая задача: «Моча гораздо «грязнее» водяных испарений

, — объясняет Карраскилло,
— Она способна разъедать металлические детали и засорять трубы».
Система ECLSS использует для очищения мочи процесс, называемый парокомпрессионная дистилляция: моча кипятится до тех пор, пока вода из неё не превратится в пар. Пар – естественно очищенная вода в парообразном состоянии (за исключением следов аммиака и других газов) – поднимается в дистилляционную камеру, оставляя концентрированную коричневую жижу нечистот и солей, которую Карраскилло милосердно называет «рассолом» (который затем выбрасывается в открытый космос). Затем пар охлаждается, и вода конденсируется. Полученный дистиллят смешивается со сконденсированной из воздуха влагой и фильтруется до состояния, пригодного для питья. Система ECLSS способна восстановить 100% влаги из воздуха и 85% воды из мочи, что соответствует суммарной эффективности около 93%.

Описанное выше, однако, относится к работе системы в земных условиях. В космосе появляется дополнительная сложность – пар не поднимается вверх: он не способен подняться в дистилляционную камеру. Поэтому в модели ECLSS для МКС «…мы вращаем дистилляционную систему для создания искусственной гравитации, чтобы разделить пары и рассол»

, — поясняет Карраскилло.

Перспективы: Известны попытки получить синтетические углеводы из продуктов жизнедеятельности космонавтов для условий космических экспедиций по схеме:

По этой схеме продукты жизнедеятельности сжигаются с образованием диоксида углерода, из которого в результате гидрирования образуется метан (реакция Сабатье). Метан может быть трансформирован в формальдегид, из которого в результате реакции поликонденсации (реакция Бутлерова) образуются углеводы-моносахариды.

Однако полученные углеводы-моносахариды представляли собой смесь рацематов — тетроз, пентоз, гексоз, гептоз, не обладающих оптической активностью.

Прим. Я даже боюсь покопаться в «вики-знаниях», чтобы вникнуть в их смысл.

Современные СЖО, после их соответствующей модернизации могут быть положены в основу создания СЖО, необходимых для освоения дальнего космоса.

Комплекс СЖО позволит обеспечить практически полное воспроизводство воды и кислорода на станции и может являться основой комплексов СЖО для намечаемых полетов к Марсу и организации базы на Луне.

Большое внимание уделяется созданию систем, обеспечивающих наиболее полный круговорот веществ. С этой целью вероятнее всего будут использовать процесс гидрирования диоксида углерода по реакции Сабатье или Боша-Будуара, которые позволят реализовать круговорот по кислороду и воде:

СО2 + 4Н2 = СН4 + 2Н2О СО2 + 2Н2 = С + 2Н2О

В случае экзобиологического запрета выброса СН4 в вакуум космического пространства метан может быть трансформирован в формальдегид и нелетучие углеводы-моносахариды по следующим реакциям:

СН4 + О2 = СН2О + Н2О поликонденсация nСН2О — ? (СН2О)n Са (ОН)2

Хочется отметить, что источниками загрязнения среды обитания на орбитальных станциях и при длительных межпланетных перелётах являются:
— конструкционные материалы интерьера (полимерные синтетические материалы, лаки, краски) — человек (при перспирации, транспирации, с кишечными газами, при санитарно-гигиенических мероприятиях, медицинских обследованиях и др.) — работающая электронная аппаратура — звенья систем жизнеобеспечения (ассенизационное устройство-АСУ, кухня, сауна, душ) и многое другое

Очевидно, что потребуется создание автоматической системы оперативного контроля и управления качеством среды обитания. Некая АСОКУКСО?

Ой не зря в Бауманке специальность по СЖО КА называлась студентами: ЖОПА…

Что расшифровывалось, как:

ЖизнеОбеспечение Пилотируемых Аппаратов

Код точно не помню, кафедра Э4.

Окончание: может я не всё учел и где-то перепутал факты, цифры. Тогда дополняйте, поправляйте и критикуйте.

На это «словоблудие» меня подтолкнула интересная публикация:Овощи для астронавтов: как растят свежую зелень в лабораториях НАСА.

Мой младший отпрыск сегодня в школе начал сколачивание «исследовательской группы- банды» для выращивания пекинского салата в старой микроволновке. Вероятно решили себя обеспечить зеленью при путешествии на Марс. Старую микроволновку придётся покупать на AVITO, т.к. мои пока все функционируют. Не ломать ведь специально?

Как я и обещал [email protected], если, что-то выйдет-фотки и результат скину на ГИК. Выращенный салат могу послать почтой РФ желающим, за отдельную плату конечно.
Первоисточники:
АКТОВАЯ РЕЧЬ доктора технических наук, профессор, заслуженного деятеля науки РФ Ю.Е. СИНЯК (РАН) «СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ ОБИТАЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ (Прошлое, настоящее и будущее)» /Москва Октябрь 2008.
Основная часть текста отсюда
«Живая наука» (https://livescience.ru)-Регенерация воды на МКС. АО «НИИхиммаш» (www.niichimmash.ru). Публикации сотрудников АО «НИИхиммаш». Интернет-магазин «Еда космонавтов»

Использованы фото, видео и документы:

Системы жизнеобеспечения с полной замкнутостью потоков вещества — презентация онлайн www.geektimes.ru/post/235877 (Филипп Терехов@lozga) www.gctc.ru www.bezformata.ru www.vesvks.ru www.epizodsspace.no-ip.org www.techcult.ru www.membrana.ru www.yaplakal.com www.авиару.рф www.fotostrana.ru www.wikipedia.org www.fishki.net www.spb.kp.ru www.nasa.gov www.heroicrelics.org www.marshallcenter.org www.prostislav1.livejournal.com/70287.html www.liveinternet.ru/users/carminaboo/post124427371 www.files.polkrf.ru Большая советская энциклопедия (www.bse.uaio.ru) www.vokrugsveta.ru

Вода из урины – миф или космическая реальность?

Из переработанной урины на космических станциях получают техническую воду для потребностей оборудования. Инновационные системы очистки воды позволяют восстановить до 6000 литров ежегодно. Они вытянут всю доступную влагу из пота, выдыхаемого воздуха и бытовых отходов из санузла.

Несмотря на жесткий дефицит питьевой воды в космосе, мнения астронавтов по поводу употребления в пищу воды, полученной из мочи оказались противоположными. Американские ученые Международной космической станции спокойно относятся к происхождению воды, и с легкостью пьют переработанные и очищенные отходы.

Россияне заняли принципиальную позицию, и категорически не согласны с такой практикой, несмотря на заверение зарубежных коллег, что она не просто не отличается от обычной, а даже качественнее из-за многократной очистки. Запасы питьевой воды они восполняют только за счет сбора конденсата.

Альтернативной технологий станет получения воды из углекислого газа, но она пока на стадии разработки. Это поможет спроектировать 100% замкнутые системы жизнеобеспечения и упростить процесс утилизации продуктов дыхания человека.

Ввиду нехватки пресной воды на земле, остается надеяться, что человечество в ближайшее время образумится, иначе придется пить собственные нечистоты, хоть и переработанные.

Бег

Первым спортивным снарядом на МКС стала беговая дорожка TVIS (Treadmill Vibration Isolation System). Полотно у нее движется так же, как у обычных земных беговых дорожек, но в отличие от тех, что установлены в вашем спортзале, у TVIS есть «упряжь» – система из ремней-регуляторов длины и пружин. Перед началом пробежки космонавт пристегивает упряжь к поясу специального жилета. Она удерживает космонавта возле дорожки и создает нагрузку, причем немаленькую. Сила, которую приходится прикладывать, чтобы сдвинуть дорожку с места при пристегнутых ремнях, эквивалентна весу в 40–100 килограммов, а шаг в 2,5 кг позволяет космонавтам выставлять нагрузку, эквивалентную их собственному весу на Земле или бóльшую. По словам космонавтов, бег в упряжи похож на земную пробежку с тяжелым рюкзаком за спиной.

TVIS была отделена от корпуса станции системой амортизаторов и гироскопов, чтобы вибрация, которую создают бегущие ноги, не расшатывала другие системы МКС. Главные источники вибрации и толчков на станции – компрессоры системы вентиляции и гиродины (механизмы, позволяющие выравнивать курс). Добавлять к этому вибрацию спортивных снарядов инженеры не хотели, поэтому плотно укутали TVIS и регулярно замеряли вибрацию в российском сегменте станции во время тренировок на дорожке. Данные о вибрации вместе с данными о пробежках (длительности, интенсивности и сердцебиении космонавтов) отправлялись на Землю, где их анализировали врачи и инженеры. В 2001 году экспертная комиссия признала дефекты дизайна TVIS и постановила заменить ее, но это произошло не сразу.

В 2009 году, когда экипаж МКС увеличили с 3 до 6 человек, понадобилась и вторая беговая дорожка. Тогда в NASA разработали Combined Operational Load Bearing External Resistance Treadmill (COLBERT). Так же, как и TVIS, она создает нагрузку за счет регулируемой пружинной «упряжи». А вот электроника у нее более продвинутая: космонавты могут создавать индивидуальные программы тренировок (например, интервальный бег) и задавать время пробежки – словом, COLBERT способна на все, на что способны современные беговые дорожки.

В отличие от довольно энергозатратной системы подавления вибрации TVIS, COLBERT снабжена новой системой, которой не требуется питание. Она состоит из пружин и связанных с ними амортизаторов, подвешенных на специальном укрепленном кронштейне.

За два рейса грузового корабля в 2012–2013 гг. на станцию доставили третью по счету дорожку – российскую БД-2, которая заменила TVIS. Инженеры РКК «Энергия», как и их американские коллеги, проектировавшие COLBERT, отказались от идеи с гироскопами и подвесили дорожку на пружинах и амортизаторах.

Сейчас обе дорожки на станции позволяют развивать скорость от 2,6 до 20 км/ч, а одна сессия может длиться хоть четыре часа, поэтому астронавты иногда даже пробегают марафонскую дистанцию. Первой это сделала американка Сунита Уильямс, а через несколько лет после нее – британец Тим Пик.

Какие эксперименты и ремонтные работы ведутся на МКС?

С 2000 года на МКС проводятся самые различные научные эксперименты для различных правительственных агентств, частных компаний, образовательных учреждений. Эксперименты варьируются от выращивания каких-нибудь цукини до наблюдения за поведением колонии муравьев. Одним из последних экспериментов, например, является 3D-печать в условиях невесомости и испытания роботов-гуманоидов Robonaut, которые в будущем, вполне возможно, будут помогать экипажам станции в работе. На вопрос о том, какой эксперимент, по мнению Коулман, является самым интересным, она ответила: «Сами члены экипажа». Называя себя «ходячим и говорящим экспериментом остеопороза», Коулман отметила, что человек в космосе примерно в 10 раз быстрее теряет массу и плотность своих костей, по сравнению с 70-летним человеком на Земле. Поэтому изучение и анализ образцов крови и мочи в условиях микрогравитации «помогает лучше понять механизм потери и восстановления массы костей».

В дополнение к задачам по проведению научных исследований члены экипажа МКС отвечают за правильную работу всех систем станции. В конце концов если что-то пойдет неправильно, то жизни всего живого на борту будет угрожать опасность. Иногда даже приходится выходить наружу, чтобы починить какую-нибудь сломавшуюся деталь или просто расчистить скопившийся рядом со станцией космический мусор, который определенно может нанести вред. В этом случае члены экипажа надевают свои скафандры и выходят в открытый космос. Кстати, одним из самых запоминающихся выходов в открытый космос был случай с американским астронавтом Сунитой Уильямс, которая использовала обычную зубную щетку, чтобы починить солнечную систему питания станции.

Так как выход в открытый космос по времени всегда ограничен, канадское космического агентство (CSA) решило прикрепить к выдвижной мобильной обслуживающей системе Canadarm2 двурукого робота-помощника «Декстра». Многофункциональная система используется для разных задач, среди которых и дополнительная сборка станции, и ловля беспилотных космических аппаратов, направляющихся к МКС, таких как модуль «Dragon» компании SpaceX, возящий различные припасы на станцию. Роботом «Декстром» удаленно управляют с Земли. Оттуда же происходит управление ремонтными работами станции, чтобы лишний раз не тревожить ее экипаж. В этом году «Декстр» даже занимался ремонтом самой системы Canadarm2.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: